Как найти дугу окружности если известен вписанный угол

Как найти длину дуги окружности ?

Как найти дугу окружности если известен вписанный угол

r — радиус окружности

α — угол AOB, в градусах

Формула длины дуги ( L ):

Как найти дугу окружности если известен вписанный угол

Калькулятор для расчета длины дуги окружности :

Формулы для окружности и круга:

Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Углы, связанные с окружностью

Как найти дугу окружности если известен вписанный уголВписанные и центральные углы
Как найти дугу окружности если известен вписанный уголУглы, образованные хордами, касательными и секущими
Как найти дугу окружности если известен вписанный уголДоказательства теорем об углах, связанных с окружностью

Видео:ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Как найти дугу окружности если известен вписанный угол

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Как найти дугу окружности если известен вписанный угол

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголКак найти дугу окружности если известен вписанный угол
Вписанный уголКак найти дугу окружности если известен вписанный уголВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголКак найти дугу окружности если известен вписанный уголВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголКак найти дугу окружности если известен вписанный уголДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголКак найти дугу окружности если известен вписанный уголВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаКак найти дугу окружности если известен вписанный угол

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Как найти дугу окружности если известен вписанный угол

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Как найти дугу окружности если известен вписанный угол

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Как найти дугу окружности если известен вписанный угол

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Как найти дугу окружности если известен вписанный угол

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Как найти дугу окружности если известен вписанный угол

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Как найти дугу окружности если известен вписанный угол

Видео:Вписанные и центральные углы #огэ #огэматематика #математикаСкачать

Вписанные и центральные углы #огэ #огэматематика #математика

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиКак найти дугу окружности если известен вписанный уголКак найти дугу окружности если известен вписанный угол
Угол, образованный секущими, которые пересекаются вне кругаКак найти дугу окружности если известен вписанный уголКак найти дугу окружности если известен вписанный угол
Угол, образованный касательной и хордой, проходящей через точку касанияКак найти дугу окружности если известен вписанный уголКак найти дугу окружности если известен вписанный угол
Угол, образованный касательной и секущейКак найти дугу окружности если известен вписанный уголКак найти дугу окружности если известен вписанный угол
Угол, образованный двумя касательными к окружностиКак найти дугу окружности если известен вписанный уголКак найти дугу окружности если известен вписанный угол

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Как найти дугу окружности если известен вписанный угол

Как найти дугу окружности если известен вписанный угол

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Как найти дугу окружности если известен вписанный угол

Как найти дугу окружности если известен вписанный угол

Как найти дугу окружности если известен вписанный угол

Как найти дугу окружности если известен вписанный угол

Угол, образованный пересекающимися хордами хордами
Как найти дугу окружности если известен вписанный угол
Формула: Как найти дугу окружности если известен вписанный угол
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Как найти дугу окружности если известен вписанный угол

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Как найти дугу окружности если известен вписанный угол
Формула: Как найти дугу окружности если известен вписанный угол
Угол, образованный касательной и секущей касательной и секущей
Формула: Как найти дугу окружности если известен вписанный угол

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Как найти дугу окружности если известен вписанный угол

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:Длина дуги окружности. 9 класс.Скачать

Длина дуги окружности. 9 класс.

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Как найти дугу окружности если известен вписанный угол

Как найти дугу окружности если известен вписанный угол

Как найти дугу окружности если известен вписанный угол

Как найти дугу окружности если известен вписанный угол

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Как найти дугу окружности если известен вписанный угол

В этом случае справедливы равенства

Как найти дугу окружности если известен вписанный угол

Как найти дугу окружности если известен вписанный угол

Как найти дугу окружности если известен вписанный угол

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Как найти дугу окружности если известен вписанный угол

В этом случае справедливы равенства

Как найти дугу окружности если известен вписанный угол

Как найти дугу окружности если известен вписанный угол

Как найти дугу окружности если известен вписанный угол

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Как найти дугу окружности если известен вписанный угол

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Как найти дугу окружности если известен вписанный угол

Как найти дугу окружности если известен вписанный угол

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Как найти дугу окружности если известен вписанный угол

Как найти дугу окружности если известен вписанный угол

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Как найти дугу окружности если известен вписанный угол

Как найти дугу окружности если известен вписанный угол

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Как найти дугу окружности если известен вписанный угол

Как найти дугу окружности если известен вписанный угол

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Как найти дугу окружности если известен вписанный угол

Как найти дугу окружности если известен вписанный угол

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Как найти дугу окружности если известен вписанный угол

Как найти дугу окружности если известен вписанный угол

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Как найти дугу окружности если известен вписанный угол

Как найти дугу окружности если известен вписанный угол

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Как найти дугу окружности если известен вписанный угол

Как найти дугу окружности если известен вписанный угол

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Видео:8 класс, 34 урок, Теорема о вписанном углеСкачать

8 класс, 34 урок, Теорема о вписанном угле

Центральные и вписанные углы

Как найти дугу окружности если известен вписанный угол

О чем эта статья:

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Как найти дугу окружности если известен вписанный угол

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Как найти дугу окружности если известен вписанный угол

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:8 класс, 33 урок, Градусная мера дуги окружностиСкачать

8 класс, 33 урок, Градусная мера дуги окружности

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Как найти дугу окружности если известен вписанный угол

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Как найти дугу окружности если известен вписанный угол

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Как найти дугу окружности если известен вписанный угол

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Как найти дугу окружности если известен вписанный угол

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Как найти дугу окружности если известен вписанный угол

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Как найти дугу окружности если известен вписанный угол

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Как найти дугу окружности если известен вписанный угол

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Как найти дугу окружности если известен вписанный угол

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Как найти дугу окружности если известен вписанный угол

ㄥBAC + ㄥBDC = 180°

Видео:№655. Центральный угол АОВ на 30° больше вписанного угла, опирающегося на дугу АВ. НайдитеСкачать

№655. Центральный угол АОВ на 30° больше вписанного угла, опирающегося на дугу АВ. Найдите

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Как найти дугу окружности если известен вписанный угол

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Как найти дугу окружности если известен вписанный угол

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Как найти дугу окружности если известен вписанный угол

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

💥 Видео

Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |Скачать

Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |

Вписанные углы в окружностиСкачать

Вписанные углы в окружности

ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс АтанасянСкачать

ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс Атанасян

8кл.Вписанный угол.стандартные задачи(найти величину вписанного угла по дуге и наоборот)Скачать

8кл.Вписанный угол.стандартные задачи(найти величину вписанного угла по дуге и наоборот)

Задача 6 №27885 ЕГЭ по математике. Урок 122Скачать

Задача 6 №27885 ЕГЭ по математике. Урок 122

Вписанные и центральные углыСкачать

Вписанные и центральные углы

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)Скачать

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)

Решение задач на тему центральные и вписанные углы.Скачать

Решение задач на тему центральные и вписанные углы.

Задача 6 №27859 ЕГЭ по математике. Урок 104Скачать

Задача 6 №27859 ЕГЭ по математике. Урок 104

Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Окружнось, дуга, длина дуги, центральный угол.Скачать

Окружнось, дуга, длина дуги, центральный угол.
Поделиться или сохранить к себе: