Как найти боковую сторону треугольника

Как посчитать стороны равнобедренного треугольника

Видео:Найдите сторону треугольника на рисункеСкачать

Найдите сторону треугольника на рисунке

Онлайн калькулятор

Как найти боковую сторону треугольника

Чтобы вычислить длины сторон равнобедренного треугольника вам нужно знать следующие параметры (либо-либо):

  • длину основания (b) и угол α
  • длину основания (b) и угол β
  • длину основания (b) и высоту (h)
  • длину двух равных сторон (a) и угол α
  • длину двух равных сторон (a) и угол β
  • длину двух равных сторон (a) и высоту (h)

Введите их в соответствующие поля и получите результат.

Как посчитать сторону a равнобедренного треугольника

Если известна сторона b и угол α

Чему равна сторона a равнобедренного треугольника если длина основания , а угол

Чему равна сторона a у равнобедренного треугольника если известны длина основания (сторона b) и угол α?

Формула
Пример

Если сторона b = 10 см, а ∠α = 30°, то:

Если известна сторона b и угол β

Чему равна сторона a равнобедренного треугольника если длина основания , а угол

Чему равна сторона a у равнобедренного треугольника если известны длина основания (сторона b) и угол β?

Формула
Пример

Если сторона b = 10 см, а ∠β = 30°, то:

a = 10 /2⋅sin 15 = 10/(2⋅0.2588) = 19.31см

Если известна сторона b и высота h

Чему равна сторона a равнобедренного треугольника если длина основания , а высота

Чему равна сторона a у равнобедренного треугольника если известны длина основания (сторона b) и высота h?

Формула
Пример

Если сторона b = 10 см, а высота h = 20 см, то:

a = √ 1 /10 2 + 20 2 = √ 0.01+400 = 20.61см

Как посчитать сторону b (основание) равнобедренного треугольника

Если известна сторона a и угол α

Чему равна сторона b равнобедренного треугольника если длина стороны , а угол

Чему равна сторона b у равнобедренного треугольника если известны длина стороны a и угол α?

Формула
Пример

Если сторона a = 10 см, а ∠α = 30°, то:

b = 2⋅10⋅cos 30° = 2⋅10⋅0.8660 = 17.32см

Если известна сторона a и угол β

Чему равна сторона b равнобедренного треугольника если длина стороны , а угол

Чему равна сторона b у равнобедренного треугольника если известны длина стороны a и угол β?

Формула
Пример

Если сторона a = 10 см, а ∠β = 40°, то:

Если известна сторона a и высота h

Чему равна сторона b равнобедренного треугольника если длина стороны , а высота

Чему равна сторона b у равнобедренного треугольника если известны длина стороны a и высота h?

Формула

b = 2⋅ √ a 2 — h 2 , h

Пример

Если сторона a = 10 см, а высота h = 5 см, то:

Видео:№490. Найдите боковую сторону и площадь равнобедренного треугольника, если: а) основание равноСкачать

№490. Найдите боковую сторону и площадь равнобедренного треугольника, если: а) основание равно

Все формулы для треугольника

Видео:№107. В равнобедренном треугольнике основание в два раза меньше боковой стороны, а периметрСкачать

№107. В равнобедренном треугольнике основание в два раза меньше боковой стороны, а периметр

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

Как найти боковую сторону треугольника

a , b , c — стороны произвольного треугольника

α , β , γ — противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

Как найти боковую сторону треугольника

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

Как найти боковую сторону треугольника

Видео:№157. В равнобедренном треугольнике основание больше боковой стороны на 2 см, но меньше суммы боковыСкачать

№157. В равнобедренном треугольнике основание больше боковой стороны на 2 см, но меньше суммы боковы

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

Как найти боковую сторону треугольника

a , b — катеты

c — гипотенуза

α , β — острые углы

Формулы для катета, ( a ):

Как найти боковую сторону треугольника

Формулы для катета, ( b ):

Как найти боковую сторону треугольника

Формулы для гипотенузы, ( c ):

Как найти боковую сторону треугольника

Как найти боковую сторону треугольника

Формулы сторон по теореме Пифагора, ( a , b ):

Как найти боковую сторону треугольника

Как найти боковую сторону треугольника

Как найти боковую сторону треугольника

Видео:Трапеция. Практическая часть - решение задачи. 8 класс.Скачать

Трапеция. Практическая часть - решение задачи. 8 класс.

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

Как найти боковую сторону треугольника

b — сторона (основание)

a — равные стороны

α — углы при основании

β — угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Как найти боковую сторону треугольника

Как найти боковую сторону треугольника

Формулы длины равных сторон , (a):

Как найти боковую сторону треугольника

Как найти боковую сторону треугольника

Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

4. Найти длину высоты треугольника

Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.

Как найти боковую сторону треугольника H — высота треугольника

a — сторона, основание

b, c — стороны

β , γ — углы при основании

p — полупериметр, p=(a+b+c)/2

R — радиус описанной окружности

S — площадь треугольника

Формула длины высоты через стороны, ( H ):

Как найти боковую сторону треугольника

Формула длины высоты через сторону и угол, ( H ):

Как найти боковую сторону треугольника

Формула длины высоты через сторону и площадь, ( H ):

Как найти боковую сторону треугольника

Формула длины высоты через стороны и радиус, ( H ):

Видео:Найдите третью сторону треугольникаСкачать

Найдите третью сторону треугольника

Боковая сторона равнобедренного треугольника

У равнобедренного треугольника 2 равных по длине стороны. Каждая из них — боковая сторона равнобедренного треугольника, а третья будет основанием. Их часто просят найти при решении различных задач в геометрии. Зная основные способы решения, формулы, теоремы и свойства геометрической фигуры, учащийся может легко справиться с предложенным заданием.

Как найти боковую сторону треугольника

Видео:Равнобедренный треугольник. 7 класс.Скачать

Равнобедренный треугольник. 7 класс.

Основные свойства

Свойства основания равнобокого треугольника применяются на практике. Фигуру будет проще воспринимать визуально, если расположить чертеж таким образом, чтобы основание располагалось снизу.

Принято считать, что равносторонний треугольник — это частный случай равнобедренного. Каждая его сторона может считаться и основанием, и боковой.

Помимо равенства боковых сторон, при решении задач используют совпадение биссектрисы с высотой. Решить задание, как найти основание равнобедренного треугольника, зная боковые стороны, невозможно в следующих случаях:

  1. Известно лишь основание или углы.
  2. По условию дана только величина характеризующих отрезков — биссектрисы, высоты.

А также решение задачи невозможно, если заданы только две боковые стороны. В остальных случаях найти решение можно, даже если известен только один угол или площадь.

Видео:Найдите площадь равнобедренного треугольника, основание которого равно 12 см, а боковая сторона 10.Скачать

Найдите площадь равнобедренного треугольника, основание которого равно 12 см, а боковая сторона 10.

Важная теорема

Для решения задач на построение, когда задана боковая сторона треугольника, используется теорема, связанная с высотой. Применяется она и для медианы с биссектрисой.

Ее суть в следующем:

Как найти боковую сторону треугольника

  1. Биссектриса, которая проведена к основанию, будет не только высотой. Она считается и медианой.
  2. Высота, проведенная к основанию, не только медиана. А также она может быть названа биссектрисой.
  3. Медиана, которая проведена к основанию, будет не только высотой, но и биссектрисой.

Теорема доказывается следующим образом: если в заданном треугольнике ABC из точки B провести высоту BD, он будет разделен на треугольники ABD и CBD. Помимо общего катета, у них равны гипотенузы. Что касается прямых AC и BD, они будут перпендикуляром.

Получается, что в ABD и CBD углы BAD и BCD, а также AB и BC равны. А также — AD и CD. Следовательно, фигуры равны, а BD считается как высотой, так и медианой и биссектрисой.

Видео:Периметр равнобедренного треугольникаСкачать

Периметр равнобедренного треугольника

Полезные формулы

Когда по условию не даны углы, но известны все стороны, поможет формула для косинусов: cos A = (b² + с² — а²)/ 2bc = (b² + a² — а²)/2ba = b²/2ba = b/2a. При этом cos В = (а² + а² — b²)/ 2bc = (b² + a² — а²)/2а² = (2 a² — b²)/2а².

Медиана вычисляется по следующей формуле: √(2 a² + 2b² — а²)/2 = √(a² + 2b²)/2. Биссектрису можно вычислить с помощью формулы √ ab (2a+b)(a+b-a)/(a+b) = b√ a (2a+b)/(a+b).

Средняя линия, параллельная основанию равнобедренного треугольника, считается равной его половине. Равны между собой и средние линии, которые параллельны его боковым сторонам.

Если необходимо вычислить радиус описанной вокруг равнобедренного треугольника окружности, используется формула R = a²/√(4а² — b²). Когда окружность вписана в фигуру действует формула r= b/2√(2a-b)/(2a+b).

Видео:№260. Высота, проведенная к основанию равнобедренного треугольника, равна 7,6 см, а боковая сторонаСкачать

№260. Высота, проведенная к основанию равнобедренного треугольника, равна 7,6 см, а боковая сторона

Примеры решения задач

Вот примеры заданий, как узнать боковую сторону равнобедренного треугольника АВС. Так, если основание АС = 8 см, а опущенная на его середину высота (являющаяся медианой) BH =3 см, то AH = AC = 4 см. По теореме Пифагора боковая сторона AB = √ AH ² + BH ² = √ 16+9 = √25 = 5 см.

Как найти боковую сторону треугольника

Можно привести и следующий пример задачи. Если площадь равнобедренного треугольника АВС = 40√ 3 см², а углы при основании (A и C) = 30°, угол B будет равен 180° — 2 * ∠АС = 180° — 2 * 30° = 120°.

В этом случае действует формула S = ½ АВ*АС * sin ∠B = ½ * AB ² * sin 120° = 40√ 3 см². Значит, AB ² = 2*40√ 3/ sin 120 = 80 √ 3:√ 3/2 = 160. Тогда АВ = 4√ 10 см.

Еще пример задачи — если боковая сторона равна 1, а угол при вершине 120°, диаметр окружности, описанной вокруг него, можно найти так: угол при основании будет равен (180−120)/2, то есть 30°. В таком случае диаметр будет 1/sin 30° = 2 см.

Задачи, связанные с нахождением боковой стороны треугольника, часто встречаются в геометрии. Для их решения необходимо знать перечисленные формулы и свойства.

📺 Видео

🔴 В прямоугольной трапеции основания ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРАСкачать

🔴 В прямоугольной трапеции основания  ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРА

Задача 6 №27621 ЕГЭ по математике. Урок 69Скачать

Задача 6 №27621 ЕГЭ по математике. Урок 69

Геометрия Найдите боковую сторону равнобедренного треугольника площадь которого равна 36 см2 а уголСкачать

Геометрия Найдите боковую сторону равнобедренного треугольника площадь которого равна 36 см2 а угол

Нахождение площади равнобедренного треугольника при помощи теоремы Пифагора | Геометрия | АлгебраСкачать

Нахождение площади равнобедренного треугольника при помощи теоремы Пифагора  |  Геометрия | Алгебра

№158. Основание равнобедренного треугольника равно 8 см. Медиана, проведенная к боковой сторонеСкачать

№158. Основание равнобедренного треугольника равно 8 см. Медиана, проведенная к боковой стороне

КАК НАЙТИ ПЛОЩАДЬ БОКОВОЙ ПОВЕРХНОСТИ ПИРАМИДЫ?Скачать

КАК НАЙТИ ПЛОЩАДЬ БОКОВОЙ ПОВЕРХНОСТИ ПИРАМИДЫ?

Нахождение сторон равнобедренного треугольникаСкачать

Нахождение сторон равнобедренного треугольника

Равнобедренный треугольникСкачать

Равнобедренный треугольник

Супер ЖЕСТЬ ➜ Найдите сторону треугольника ➜ Решить без тригонометрииСкачать

Супер ЖЕСТЬ ➜ Найдите сторону треугольника ➜ Решить без тригонометрии
Поделиться или сохранить к себе: