Где вершина прямоугольного треугольника

Прямоугольный треугольник

Прямоугольный треугольник – треугольник, в котором один угол прямой (то есть равен 90˚).

Сторона, противоположная прямому углу, называется гипотенузой прямоугольного треугольника.

Стороны, прилежащие к прямому углу, называются катетами .

Где вершина прямоугольного треугольника

Признаки равенства прямоугольных треугольников

Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны ( по двум катетам ).

Где вершина прямоугольного треугольника

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны ( по катету и острому углу ).

Где вершина прямоугольного треугольникаЕсли гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и острому углу ).

Где вершина прямоугольного треугольника

Если гипотенуза и катет одного прямоугольного треугольника равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и катету ).

Где вершина прямоугольного треугольника

Свойства прямоугольного треугольника

1. Сумма острых углов прямоугольного треугольника равна 90˚.

2. Катет, противолежащий углу в 30˚, равен половине гипотенузы.

И обратно, если в треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚.

Где вершина прямоугольного треугольника

3. Теорема Пифагора:

Где вершина прямоугольного треугольника, где Где вершина прямоугольного треугольника– катеты, Где вершина прямоугольного треугольника– гипотенуза. Видеодоказательство

Где вершина прямоугольного треугольника

4. Площадь Где вершина прямоугольного треугольникапрямоугольного треугольника с катетами Где вершина прямоугольного треугольника:

Где вершина прямоугольного треугольника

5. Высота Где вершина прямоугольного треугольникапрямоугольного треугольника, проведенная к гипотенузе выражается через катеты Где вершина прямоугольного треугольникаи гипотенузу Где вершина прямоугольного треугольникаследующим образом:

Где вершина прямоугольного треугольника

Где вершина прямоугольного треугольника

6. Центр описанной окружности – есть середина гипотенузы.

Где вершина прямоугольного треугольника

7. Радиус Где вершина прямоугольного треугольникаописанной окружности есть половина гипотенузы Где вершина прямоугольного треугольника:

Где вершина прямоугольного треугольника

8. Медиана, проведенная к гипотенузе, равна ее половине

9. Радиус Где вершина прямоугольного треугольникавписанной окружности выражается через катеты Где вершина прямоугольного треугольникаи гипотенузу Где вершина прямоугольного треугольникаследующим образом:

Где вершина прямоугольного треугольника

Где вершина прямоугольного треугольника

Тригонометрические соотношения в прямоугольном треугольнике смотрите здесь.

Видео:Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

Треугольник

Треугольник — это замкнутая ломаная линия, состоящая из трёх звеньев:

Где вершина прямоугольного треугольника

Вершины ломаной называются вершинами треугольника, а её звенья — сторонами треугольника. Углы, образованные двумя сторона треугольника, называются углами треугольника:

Где вершина прямоугольного треугольника

В треугольнике ABC вершины A, B и C — это вершины треугольника, звенья AB, BC и CA — стороны треугольника. Три угла — ∠ABC, ∠BCA и ∠CAB — углы треугольника. Часто углы треугольника обозначаются только одной буквой: ∠A, ∠B, ∠C.

Треугольник обычно обозначается тремя буквами, стоящими при его вершинах. Например, треугольник ABC, или BCA, или CBA. Вместо слова треугольник часто используется знак Где вершина прямоугольного треугольника. Так, запись Где вершина прямоугольного треугольникаABC будет читаться: треугольник ABC .

У каждого треугольника 3 вершины, 3 стороны и 3 угла.

Видео:Высота прямоугольного треугольникаСкачать

Высота прямоугольного треугольника

Высота

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника на его основание. Высота треугольника может быть опущена и на продолжение основания.

Где вершина прямоугольного треугольника

Отрезок BN — это высота Где вершина прямоугольного треугольникаABC. Отрезок EL высота Где вершина прямоугольного треугольникаDEF, опущенная на продолжение стороны DF.

Длина высоты — это длина отрезка от вершины угла до пересечения с основанием.

Каждый треугольник имеет три высоты.

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Биссектриса

Биссектриса угла треугольника — прямая, делящая угол треугольника пополам. Длина отрезка этой прямой от вершины угла до точки пересечения с противоположной стороной называется длиной биссектрисы.

Где вершина прямоугольного треугольника

Отрезок BN — это биссектриса Где вершина прямоугольного треугольникаABC.

Каждый треугольник имеет три биссектрисы.

Видео:№205. Через вершину С прямого угла прямоугольного треугольника ABC проведена прямая CD, перпендикуляСкачать

№205. Через вершину С прямого угла прямоугольного треугольника ABC проведена прямая CD, перпендикуля

Медиана

Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Длина этого отрезка называется длиной медианы.

Где вершина прямоугольного треугольника

Отрезок BN — это медиана Где вершина прямоугольного треугольникаABC.

Видео:№199. Точка S равноудалена от вершин прямоугольного треугольника и не лежит в плоскости этогоСкачать

№199. Точка S равноудалена от вершин прямоугольного треугольника и не лежит в плоскости этого

Вершина треугольника

Где вершина прямоугольного треугольника Где вершина прямоугольного треугольника

Средняя оценка: 4.2

Всего получено оценок: 192.

Средняя оценка: 4.2

Всего получено оценок: 192.

В геометрии нередко рассматривают такое понятие, как «вершина треугольника». Это точка пересечения двух сторон данной фигуры. Практически в каждой задаче встречается это понятие, поэтому имеет смысл рассмотреть его более подробно.

Видео:Высота в прямоугольном треугольнике. Как найти? Полезная формулаСкачать

Высота в прямоугольном треугольнике. Как найти? Полезная формула

Определение вершины треугольника

В треугольнике есть три точки пересечения сторон, образующие три угла. Их называют вершинами, а стороны, на которые они опираются – сторонами треугольника.

Где вершина прямоугольного треугольникаРис. 1. Вершина в треугольнике.

Вершины в треугольниках обозначают большими латинскими буквами. Поэтому чаще всего в математике стороны обозначают двумя заглавными латинскими буквами, по названию вершин, которые входят в стороны. Например стороной АВ называют сторону треугольника, соединяющую вершины А и В.

Видео:№145. Через вершину А прямоугольного треугольника ABC с прямым углом С проведена прямая AD,Скачать

№145. Через вершину А прямоугольного треугольника ABC с прямым углом С проведена прямая AD,

Характеристики понятия

Если взять произвольно ориентированный в плоскости треугольник, то на практике очень удобно выразить его геометрические характеристики через координаты вершин этой фигуры. Так, вершину А треугольника можно выразить точкой с определенными числовыми параметрами А(х; y).

Зная координаты вершин треугольника можно найти точки пересечения медиан, длину высоты, опущенную на одну из сторон фигуры, и площадь треугольника.

Для этого используются свойства векторов, изображаемых в системе декартовой системе координат, ведь длина стороны треугольника определятся через длину вектора с точками, в которых находятся соответствующие вершины этой фигуры.

Видео:№576. Высота прямоугольного треугольника, проведенная из вершины прямого угла, делитСкачать

№576. Высота прямоугольного треугольника, проведенная из вершины прямого угла, делит

Использование вершины треугольника

При любой вершине треугольника можно найти угол, который будет смежным внутреннему углу рассматриваемой фигуры. Для этого придется продлить одну из сторон треугольника. Поскольку сторон при каждой вершин две, то и внешних углов при каждой вершине два. Внешний угол равен сумме двух внутренних углов треугольника, несмежных с ним.

Если построить при одной вершине два внешних угла, то они будут равны, как вертикальные.

Где вершина прямоугольного треугольника

Видео:Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !Скачать

Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !

Что мы узнали?

Одним из важных понятий геометрии при рассмотрении различных типов треугольников является вершина. Это точка, где пересекаются две стороны угла данной геометрической фигуры. Ее обозначают одной из больших букв латинского алфавита. Вершину треугольника можно выразить через координаты x и y, это помогает определять длину стороны треугольника как длину вектора.

🎥 Видео

33 Третья вершина прямоугольного треугольникаСкачать

33 Третья вершина прямоугольного треугольника

Высота прямоугольного треугольника ▶ (Мини-ликбез №9)Скачать

Высота прямоугольного треугольника ▶ (Мини-ликбез №9)

№202. Точка удалена от каждой из вершин прямоугольного треугольника на расстояние 10 см. На какомСкачать

№202. Точка удалена от каждой из вершин прямоугольного треугольника на расстояние 10 см. На каком

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

Свойство медианы в прямоугольном треугольнике #shortsСкачать

Свойство медианы в прямоугольном треугольнике #shorts

Медиана в прямоугольном треугольникеСкачать

Медиана в прямоугольном треугольнике

№155. Через вершину прямого угла С равнобедренного прямоугольного треугольника ABCСкачать

№155. Через вершину прямого угла С равнобедренного прямоугольного треугольника ABC

Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)

Катеты прямоугольного треугольника равны 3 и 4. Найдите высоту, проведённую к гипотенузеСкачать

Катеты прямоугольного треугольника равны 3 и 4. Найдите высоту, проведённую к гипотенузе

Свойства прямоугольного треугольника. 7 класс.Скачать

Свойства прямоугольного треугольника. 7 класс.
Поделиться или сохранить к себе: