Формула длины прямоугольника вписанного в окружность

Прямоугольник. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ прямоугольника, радиус описанной вокруг прямоугольника окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Определение 1. Прямоугольник − это параллелограмм, у которого все углы прямые (Рис.1).

Формула длины прямоугольника вписанного в окружность

Можно дать и другое определение прямоугольника.

Определение 2. Прямоугольник − это четырехугольник, у которого все углы прямые.

Содержание
  1. Свойства прямоугольника
  2. Диагональ прямоугольника
  3. Окружность, описанная около прямоугольника
  4. Формула радиуса окружности описанной около прямоугольника
  5. Периметр прямоугольника
  6. Формулы сторон прямоугольника через его диагональ и периметр
  7. Признаки прямоугольника
  8. Вписать прямоугольник в окружность формула
  9. Прямоугольник. Онлайн калькулятор
  10. Свойства прямоугольника
  11. Диагональ прямоугольника
  12. Окружность, описанная около прямоугольника
  13. Формула радиуса окружности описанной около прямоугольника
  14. Периметр прямоугольника
  15. Формулы сторон прямоугольника через его диагональ и периметр
  16. Признаки прямоугольника
  17. Радиус описанной окружности прямоугольника
  18. Вписанная окружность
  19. Свойства вписанной окружности
  20. В треугольник
  21. В четырехугольник
  22. Примеры вписанной окружности
  23. Верные и неверные утверждения
  24. Окружность вписанная в угол
  25. Калькулятор расчета стороны правильного многоугольника через радиусы окружностей
  26. Расчет длины стороны

Видео:Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Свойства прямоугольника

Так как прямоугольник является параллелограммом, то все свойства параллелограмма верны и для прямоугольника.

  • 1. Стороны прямоугольника являются его высотами.
  • 2. Все углы прямоугольника прямые.
  • 3. Квадрат диагонали прямоугольника равен сумме квадратов его соседних двух сторон.
  • 4. Диагонали прямоугольника равны.
  • 5. Около любого прямоугольника можно описать окружность, при этом диаметр описанной окружности равна диагонали прямоугольника.

Длиной прямоугольника называется более длинная пара его сторон.

Шириной прямоугольника называется более короткая пара его сторон.

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Диагональ прямоугольника

Определение 3. Диагональ прямоугольника − это отрезок, соединяющий две несмежные вершины прямоугольника.

Формула длины прямоугольника вписанного в окружность

На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. Прямоугольник имеет две диагонали.

Для вычисления длины диагонали воспользуемся теоремой Пифагора:

Формула длины прямоугольника вписанного в окружность
Формула длины прямоугольника вписанного в окружность.(1)

Из равенства (1) найдем d:

Формула длины прямоугольника вписанного в окружность.(2)

Пример 1. Стороны прямоугольника равны Формула длины прямоугольника вписанного в окружность. Найти диагональ прямоугольника.

Решение. Для нахождения диаметра прямоугольника воспользуемся формулой (2). Подставляя Формула длины прямоугольника вписанного в окружностьв (2), получим:

Формула длины прямоугольника вписанного в окружность

Ответ: Формула длины прямоугольника вписанного в окружность

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Окружность, описанная около прямоугольника

Определение 4. Окружность называется описанной около прямоугольника, если все вершины прямоугольника находятся на этой окружности (Рис.3):

Формула длины прямоугольника вписанного в окружность

Видео:Длина окружности. Площадь круга - математика 6 классСкачать

Длина окружности. Площадь круга - математика 6 класс

Формула радиуса окружности описанной около прямоугольника

Выведем формулу вычисления радиуса окружности, описанной около прямоугольника через стороны прямоугольника.

Нетрудно заметить, что радиус описанной около прямоугольника окружности равна половине диагонали (Рис.3). То есть

( small R=frac )(3)

Подставляя (3) в (2), получим:

( small R=frac<large sqrt> )(4)

Пример 2. Стороны прямоугольника равны Формула длины прямоугольника вписанного в окружность. Найти радиус окружности, описанной вокруг прямоугольника.

Решение. Для нахождения радиуса окружности описанной вокруг прямоугольника воспользуемся формулой (4). Подставляя Формула длины прямоугольника вписанного в окружностьв (4), получим:

Формула длины прямоугольника вписанного в окружность
Формула длины прямоугольника вписанного в окружность

Ответ: Формула длины прямоугольника вписанного в окружность

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Периметр прямоугольника

Определение 5. Периметр прямоугольника − это сумма всех его сторон. Обозначается периметр латинской буквой P.

Периметр прямоугольника вычисляется формулой:

Формула длины прямоугольника вписанного в окружность(5)

где ( small a ) и ( small b ) − стороны прямоугольника.

Пример 3. Стороны прямоугольника равны Формула длины прямоугольника вписанного в окружность. Найти периметр прямоугольника.

Решение. Для нахождения периметра прямоугольника воспользуемся формулой (5). Подставляя Формула длины прямоугольника вписанного в окружностьв (5), получим:

Формула длины прямоугольника вписанного в окружность

Ответ: Формула длины прямоугольника вписанного в окружность

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Формулы сторон прямоугольника через его диагональ и периметр

Выведем формулу вычисления сторон прямоугольника, если известны диагональ ( small d ) и периметр ( small P ) прямоугольника. Заметим: чтобы прямоугольник существовал, должно удовлетворяться условие ( small frac P2>d ) (это следует из неравенства треугольника).

Чтобы найти стороны прямоугольника запишем формулу Пифагора и формулу периметра прямоугольника:

Формула длины прямоугольника вписанного в окружность(6)
Формула длины прямоугольника вписанного в окружность(7)

Из формулы (7) найдем ( small b ) и подставим в (6):

Формула длины прямоугольника вписанного в окружность(8)
Формула длины прямоугольника вписанного в окружность(9)

Упростив (4), получим квадратное уравнение относительно неизвестной ( small a ):

Формула длины прямоугольника вписанного в окружность(10)

Вычислим дискриминант квадратного уравнения (10):

Формула длины прямоугольника вписанного в окружностьФормула длины прямоугольника вписанного в окружность(11)

Сторона прямоугольника вычисляется из следующих формул:

Формула длины прямоугольника вписанного в окружность(12)

После вычисления ( small a ), сторона ( small b ) вычисляется или из формулы (12), или из (8).

Примечание. Легко можно доказать, что

( frac

>d ; ⇒ ; P>2cdot d ; ⇒ ) ( small P^2>4 cdot d^2 ; ⇒ ; 4d^2-P^2 2d .) Следовательно выполняется неравенство (*).

Пример 4. Диагональ прямоугольника равна Формула длины прямоугольника вписанного в окружность, а периметр равен Формула длины прямоугольника вписанного в окружность. Найти стороны прямоугольника.

Решение. Для нахождения сторон прямоугольника воспользуемся формулами (11), (12) и (8). Найдем сначала дискриминант ( small D ) из формулы (11). Для этого подставим Формула длины прямоугольника вписанного в окружность, Формула длины прямоугольника вписанного в окружностьв (11):

Формула длины прямоугольника вписанного в окружность

Подставляя значения Формула длины прямоугольника вписанного в окружностьи Формула длины прямоугольника вписанного в окружностьв первую формулу (12), получим:

Формула длины прямоугольника вписанного в окружность

Найдем другую сторону ( small b ) из формулы (8). Подставляя значения Формула длины прямоугольника вписанного в окружностьи Формула длины прямоугольника вписанного в окружностьв формулу, получим:

Формула длины прямоугольника вписанного в окружность

Ответ: Формула длины прямоугольника вписанного в окружность, Формула длины прямоугольника вписанного в окружность

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Признаки прямоугольника

Признак 1. Если в параллелограмме диагонали равны, то этот параллелограмм является прямоугольником.

Признак 2. Если квадрат диагонали параллелограмма равен сумме квадратов его смежных сторон, то этот параллелограмм является прямоугольником.

Признак 3. Если углы параллелограмма равны, то этот параллелограмм является прямоугольником.

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Вписать прямоугольник в окружность формула

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Прямоугольник. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ прямоугольника, радиус описанной вокруг прямоугольника окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Определение 1. Прямоугольник − это параллелограмм, у которого все углы прямые (Рис.1).

Формула длины прямоугольника вписанного в окружность

Можно дать и другое определение прямоугольника.

Определение 2. Прямоугольник − это четырехугольник, у которого все углы прямые.

Видео:Длина дуги окружности. 9 класс.Скачать

Длина дуги окружности. 9 класс.

Свойства прямоугольника

Так как прямоугольник является параллелограммом, то все свойства параллелограмма верны и для прямоугольника.

  • 1. Стороны прямоугольника являются его высотами.
  • 2. Все углы прямоугольника прямые.
  • 3. Квадрат диагонали прямоугольника равен сумме квадратов его соседних двух сторон.
  • 4. Диагонали прямоугольника равны.
  • 5. Около любого прямоугольника можно описать окружность, при этом диаметр описанной окружности равна диагонали прямоугольника.

Длиной прямоугольника называется более длинная пара его сторон.

Шириной прямоугольника называется более короткая пара его сторон.

Видео:№ 5.6. Периметр и площадь квадрата (дополнение)Скачать

№ 5.6. Периметр и площадь квадрата (дополнение)

Диагональ прямоугольника

Определение 3. Диагональ прямоугольника − это отрезок, соединяющий две несмежные вершины прямоугольника.

Формула длины прямоугольника вписанного в окружность

На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. Прямоугольник имеет две диагонали.

Для вычисления длины диагонали воспользуемся теоремой Пифагора:

Формула длины прямоугольника вписанного в окружность
Формула длины прямоугольника вписанного в окружность.(1)

Из равенства (1) найдем d:

Формула длины прямоугольника вписанного в окружность.(2)

Пример 1. Стороны прямоугольника равны Формула длины прямоугольника вписанного в окружность. Найти диагональ прямоугольника.

Решение. Для нахождения диаметра прямоугольника воспользуемся формулой (2). Подставляя Формула длины прямоугольника вписанного в окружностьв (2), получим:

Формула длины прямоугольника вписанного в окружность

Ответ: Формула длины прямоугольника вписанного в окружность

Видео:9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

Окружность, описанная около прямоугольника

Определение 4. Окружность называется описанной около прямоугольника, если все вершины прямоугольника находятся на этой окружности (Рис.3):

Формула длины прямоугольника вписанного в окружность

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Формула радиуса окружности описанной около прямоугольника

Выведем формулу вычисления радиуса окружности, описанной около прямоугольника через стороны прямоугольника.

Нетрудно заметить, что радиус описанной около прямоугольника окружности равна половине диагонали (Рис.3). То есть

( small R=frac )(3)

Подставляя (3) в (2), получим:

( small R=frac )(4)

Пример 2. Стороны прямоугольника равны Формула длины прямоугольника вписанного в окружность. Найти радиус окружности, описанной вокруг прямоугольника.

Решение. Для нахождения радиуса окружности описанной вокруг прямоугольника воспользуемся формулой (4). Подставляя Формула длины прямоугольника вписанного в окружностьв (4), получим:

Формула длины прямоугольника вписанного в окружность
Формула длины прямоугольника вписанного в окружность

Ответ: Формула длины прямоугольника вписанного в окружность

Видео:Вписанный в окружность прямоугольный треугольник.Скачать

Вписанный в окружность прямоугольный треугольник.

Периметр прямоугольника

Определение 5. Периметр прямоугольника − это сумма всех его сторон. Обозначается периметр латинской буквой P.

Периметр прямоугольника вычисляется формулой:

Формула длины прямоугольника вписанного в окружность(5)

где ( small a ) и ( small b ) − стороны прямоугольника.

Пример 3. Стороны прямоугольника равны Формула длины прямоугольника вписанного в окружность. Найти периметр прямоугольника.

Решение. Для нахождения периметра прямоугольника воспользуемся формулой (5). Подставляя Формула длины прямоугольника вписанного в окружностьв (5), получим:

Формула длины прямоугольника вписанного в окружность

Ответ: Формула длины прямоугольника вписанного в окружность

Видео:Окружность. Круг. 5 класс.Скачать

Окружность. Круг. 5 класс.

Формулы сторон прямоугольника через его диагональ и периметр

Выведем формулу вычисления сторон прямоугольника, если известны диагональ ( small d ) и периметр ( small P ) прямоугольника. Заметим: чтобы прямоугольник существовал, должно удовлетворяться условие ( small frac P2>d ) (это следует из неравенства треугольника).

Чтобы найти стороны прямоугольника запишем формулу Пифагора и формулу периметра прямоугольника:

Формула длины прямоугольника вписанного в окружность(6)
Формула длины прямоугольника вписанного в окружность(7)

Из формулы (7) найдем ( small b ) и подставим в (6):

Формула длины прямоугольника вписанного в окружность(8)
Формула длины прямоугольника вписанного в окружность(9)

Упростив (4), получим квадратное уравнение относительно неизвестной ( small a ):

Формула длины прямоугольника вписанного в окружность(10)

Вычислим дискриминант квадратного уравнения (10):

Формула длины прямоугольника вписанного в окружностьФормула длины прямоугольника вписанного в окружность(11)

Сторона прямоугольника вычисляется из следующих формул:

Формула длины прямоугольника вписанного в окружность(12)

После вычисления ( small a ), сторона ( small b ) вычисляется или из формулы (12), или из (8).

Примечание. Легко можно доказать, что

( frac >d ; ⇒ ; P>2cdot d ; ⇒ ) ( small P^2>4 cdot d^2 ; ⇒ ; 4d^2-P^2 2d .) Следовательно выполняется неравенство (*).

Пример 4. Диагональ прямоугольника равна Формула длины прямоугольника вписанного в окружность, а периметр равен Формула длины прямоугольника вписанного в окружность. Найти стороны прямоугольника.

Решение. Для нахождения сторон прямоугольника воспользуемся формулами (11), (12) и (8). Найдем сначала дискриминант ( small D ) из формулы (11). Для этого подставим Формула длины прямоугольника вписанного в окружность, Формула длины прямоугольника вписанного в окружностьв (11):

Формула длины прямоугольника вписанного в окружность

Подставляя значения Формула длины прямоугольника вписанного в окружностьи Формула длины прямоугольника вписанного в окружностьв первую формулу (12), получим:

Формула длины прямоугольника вписанного в окружность

Найдем другую сторону ( small b ) из формулы (8). Подставляя значения Формула длины прямоугольника вписанного в окружностьи Формула длины прямоугольника вписанного в окружностьв формулу, получим:

Формула длины прямоугольника вписанного в окружность

Ответ: Формула длины прямоугольника вписанного в окружность, Формула длины прямоугольника вписанного в окружность

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Признаки прямоугольника

Признак 1. Если в параллелограмме диагонали равны, то этот параллелограмм является прямоугольником.

Признак 2. Если квадрат диагонали параллелограмма равен сумме квадратов его смежных сторон, то этот параллелограмм является прямоугольником.

Признак 3. Если углы параллелограмма равны, то этот параллелограмм является прямоугольником.

Видео:Геометрия с нуля! / Выпуск № 6. Формула квадрата, вписанного в окружность / ОГЭ по математике 2022Скачать

Геометрия с нуля! / Выпуск № 6. Формула квадрата, вписанного в окружность / ОГЭ по математике 2022

Радиус описанной окружности прямоугольника

Как известно, прямоугольником является четырехугольник с прямыми углами. Противоположные углы прямоугольника в сумме составляют 180°, соответственно, вокруг него можно описать одну окружность, при этом, вершины прямоугольника должны быть расположены на этой окружности. Центр прямоугольника и описанной вокруг него окружности размещен в месте пересечения диагоналей. Диагонали прямоугольника равны. Если известны стороны прямоугольника, можно рассчитать величину диагоналей по теореме Пифагора. Диагональ прямоугольника является в то же время и диаметром описанной окружности. R описанной окружности представляет половину диагонали прямоугольника и рассчитывается путем извлечения квадратного корня из суммы квадратов его сторон деленный на 2 или как половина его диагонали:

Формула длины прямоугольника вписанного в окружностьФормула длины прямоугольника вписанного в окружность

d — диагональ;
a, b — величины сторон прямоугольника.

Если известны стороны прямоугольника или диагонали, можно быстро найти R описанной окружности с помощью калькулятора.

Видео:Четырехугольники, вписанные в окружность. 9 класс.Скачать

Четырехугольники, вписанные в окружность. 9 класс.

Вписанная окружность

Формула длины прямоугольника вписанного в окружность

Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.

Окружность, точно можно вписать в такие геометрические фигуры, как:

  • Треугольник
  • Выпуклый, правильный многоугольник
  • Квадрат
  • Равнобедренная трапеция
  • Ромб

В четырехугольник, можно вписать окружность,
только при условии, что суммы длин
противоположных сторон равны.

Во все вышеперечисленные фигуры
окружность, может быть вписана, только один раз.

Окружность невозможно вписать в прямоугольник
и параллелограмм, так как окружность не будет
соприкасаться со всеми сторонам этих фигур.

Геометрические фигуры, в которые вписана окружность,
называются описанными около окружности.

Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.

Описанный четырехугольник — это четырехугольник, который описан
около окружности и все четыре его стороны соприкасаются с окружностью.

Свойства вписанной окружности

В треугольник

  1. В любой треугольник может быть вписана окружность, причем только один раз.
  2. Центр вписанной окружности — точка пересечения биссектрис треугольника.
  3. Вписанная окружность касается всех сторон треугольника.
  4. Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:

[ S = frac (a+b+c) cdot r = pr ]

p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.

  • Центр окружности вписанной в треугольник равноудален от всех сторон.
  • Точка касания — это точка, в которой соприкасается
    окружность и любая из сторон треугольника.
  • От центра вписанной окружности можно провести
    перпендикуляры к любой точке касания.
  • Вписанная в треугольник окружность делит стороны
    треугольника на 3 пары равных отрезков.
  • Вписанная и описанная около треугольника окружность тесно взаимосвязаны.
    Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:

    с — расстояние между центрами вписанной и описанной окружностей треугольника.
    R — радиус описанной около треугольника.
    r — радиус вписанной окружности треугольника.

    В четырехугольник

    1. Не во всякий четырехугольник можно вписать окружность.
    2. Если у четырехугольника суммы длин его противолежащих
      сторон равны, то окружность, может быть, вписана (Теорема Пито).
    3. Центр вписанной окружности и середины двух
      диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона).
    4. Точка пересечения биссектрис — это центр вписанной окружности.
    5. Точка касания — это точка, в которой соприкасается
      окружность и любая из сторон четырехугольника.
    6. Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:

    [ S = frac (a+b+c+d)cdot r = pr ]

    p — полупериметр четырехугольника.
    r — радиус вписанной окружности четырехугольника.

  • Точка касания вписанной окружности, которая лежит на любой из сторон,
    равноудалены от этой конца и начала этой стороны, то есть от его вершин.
  • Примеры вписанной окружности

    • Треугольник
      Формула длины прямоугольника вписанного в окружность
    • Четырехугольник
      Формула длины прямоугольника вписанного в окружность
    • Многоугольник
      Формула длины прямоугольника вписанного в окружность

    Примеры описанного четырехугольника:
    равнобедренная трапеция, ромб, квадрат.

    Примеры описанного треугольника:
    равносторонний
    , равнобедренный,
    прямоугольный треугольники.

    Верные и неверные утверждения

    1. Радиус вписанной окружности в треугольник и радиус вписанной
      в четырехугольник вычисляется по одной и той же формуле. Верное утверждение.
    2. Любой параллелограмм можно вписать в окружность. Неверное утверждение.
    3. В любой четырехугольник можно вписать окружность. Неверное утверждение.
    4. В любой ромб можно вписать окружность. Верное утверждение.
    5. Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
    6. Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
    7. Угол вписанный в окружность равен соответствующему центральному
      углу опирающемуся на ту же дугу. Неверное утверждение.
    8. Радиус вписанной окружности в прямоугольный треугольник равен
      половине разности суммы катетов и гипотенузы. Верное утверждение.
    9. Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
    10. Вписанная окружность в треугольник имеет в общем
      три общие точки со всеми сторонами треугольника. Верное утверждение.

    Окружность вписанная в угол

    Окружность вписанная в угол — это окружность, которая
    лежит внутри этого угла и касается его сторон.

    Центр окружности, которая вписана в угол,
    расположен на биссектрисе этого угла.

    К центру окружности вписанной в угол, можно провести,
    в общей сложности два перпендикуляра со смежных сторон.

    Длина диаметра, радиуса, хорды, дуги вписанной окружности
    измеряется в км, м, см, мм и других единицах измерения.

    Видео:Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

    Вписанная и описанная окружности | Лайфхак для запоминания

    Калькулятор расчета стороны правильного многоугольника через радиусы окружностей

    В публикации представлены онлайн-калькуляторы и формулы для расчета длины стороны правильного многоугольника через радиус вписанной или описанной окружности.

    Видео:Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2Скачать

    Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2

    Расчет длины стороны

    Формула длины прямоугольника вписанного в окружность

    Инструкция по использованию: введите радиус вписанной (r) или описанной (R) окружности, укажите количество вершин правильного многоугольника (n), затем нажмите кнопку “Рассчитать”. В результате будет вычислена длина стороны фигуры (a).

    Поделиться или сохранить к себе: