Если все стороны многоугольника касаются окружности то окружность называют

Описанная и вписанная окружность

теория по математике 📈 планиметрия

Видео:9 класс, 23 урок, Окружность, вписанная в правильный многоугольникСкачать

9 класс, 23 урок, Окружность, вписанная в правильный многоугольник

Описанная окружность

Окружность называется описанной вокруг многоугольника, если все вершины многоугольника принадлежат этой окружности. Многоугольник в этом случае называется вписанным в окружность.

Любой правильный многоугольник можно вписать в окружность. На рисунке описанная окружность проходит через каждую вершину правильного шестиугольника.

Если все стороны многоугольника касаются окружности то окружность называют

Видео:9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать

9 класс, 22 урок, Окружность, описанная около правильного многоугольника

Вписанная окружность

Окружность называется вписанной в многоугольник, если она касается всех его сторон. Многоугольник в этом случае называется описанным около окружности.

В любой правильный многоугольник можно вписать окружность. На рисунке окружность вписана в правильный шестиугольник, она касается всех его сторон.

Если все стороны многоугольника касаются окружности то окружность называют

Вписанный и описанный треугольники

Центр описанной около треугольника окружности лежит на пересечении серединных перпендикуляров, проведенных к сторонам треугольника.

В любой треугольник можно вписать окружность: Если все стороны многоугольника касаются окружности то окружность называютЦентр вписанной окружности

Центр окружности, вписанной в треугольник, лежит на пересечении его биссектрис.

Вписанный и описанный четырехугольники

Не во всякий четырехугольник можно вписать окружность. Например, в прямоугольник нельзя вписать окружность. По рисунку видно, что окружность касается только трех его сторон, что не соответствует определению.

Если все стороны многоугольника касаются окружности то окружность называютУсловие вписанной в 4-х угольник окружности

Окружность является вписанной в четырехугольник, если суммы длин противоположных сторон равны.

Если все стороны многоугольника касаются окружности то окружность называют

На рисунке выполняется данное условие, то есть AD + BC=DC + AB

Окружность является описанной около четырехугольника, если суммы противоположных углов равны 180 градусов.

Если все стороны многоугольника касаются окружности то окружность называют

На рисунке окружности описана около четырехугольника, следовательно выполнено условие, что сумма углов А и С равна сумме углов B и D и равна 180 градусов.

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

§ 4. Вписанная и описанная окружности

Вписанная окружность

Если все стороны многоугольника касаются окружности, то окружность называется вписанной в многоугольник, а многоугольник — описанным около этой окружности. На рисунке 231 четырёхугольник EFMN описан около окружности с центром О, а четырёхугольник DKMN не является описанным около этой окружности, так как сторона DK не касается окружности.

Если все стороны многоугольника касаются окружности то окружность называют

На рисунке 232 треугольник АВС описан около окружности с центром О.

Если все стороны многоугольника касаются окружности то окружность называют

Докажем теорему об окружности, вписанной в треугольник.

В любой треугольник можно вписать окружность.

Рассмотрим произвольный треугольник АВС и обозначим буквой О точку пересечения его биссектрис. Проведём из точки О перпендикуляры OK, OL и ОМ соответственно к сторонам АВ, ВС и СА (см. рис. 232). Так как точка О равноудалена от сторон треугольника АВС, то OK = OL = ОМ. Поэтому окружность с центром О радиуса ОК проходит через точки К, L и М. Стороны треугольника АВС касаются этой окружности в точках К, L, М, так как они перпендикулярны к радиусам OK, OL и ОМ. Значит, окружность с центром О радиуса ОК является вписанной в треугольник АВС. Теорема доказана.

Отметим, что в треугольник можно вписать только одну окружность.

В самом деле, допустим, что в треугольник можно вписать две окружности. Тогда центр каждой окружности равноудалён от сторон треугольника и, значит, совпадает с точкой О пересечения биссектрис треугольника, а радиус равен расстоянию от точки О до сторон треугольника. Следовательно, эти окружности совпадают.

Обратимся к рисунку 232. Мы видим, что треугольник АВС составлен из трёх треугольников: ABO, ВСО и САО. Если в каждом из этих треугольников принять за основание сторону треугольника АВС, то высотой окажется радиус r окружности, вписанной в треугольник АВС. Поэтому площадь S треугольника АВС выражается формулой

Если все стороны многоугольника касаются окружности то окружность называют

площадь треугольника равна произведению его полупериметра на радиус вписанной в него окружности.

В отличие от треугольника не во всякий четырёхугольник можно вписать окружность.

Рассмотрим, например, прямоугольник, у которого смежные стороны не равны, т. е. прямоугольник, не являющийся квадратом. Ясно, что в такой прямоугольник можно «поместить» окружность, касающуюся трёх его сторон (рис. 233, а), но нельзя «поместить» окружность так, чтобы она касалась всех четырёх его сторон, т. е. нельзя вписать окружность. Если же в четырёхугольник можно вписать окружность, то его стороны обладают следующим замечательным свойством:

В любом описанном четырёхугольнике суммы противоположных сторон равны.

Если все стороны многоугольника касаются окружности то окружность называют

Это свойство легко установить, используя рисунок 233, б, на котором одними и теми же буквами обозначены равные отрезки касательных. В самом деле, АВ + CD = а + b + с + d, ВС + AD-a + b + c + d, поэтому АВ + CD = ВС + AD. Оказывается, верно и обратное утверждение:

Если суммы противоположных сторон выпуклого четырёхугольника равны, то в него можно вписать окружность (см. задачу 724).

Описанная окружность

Если все вершины многоугольника лежат на окружности, то окружность называется описанной около многоугольника, а многоугольник — вписанным в эту окружность. На рисунке 234 четырёхугольник ABCD вписан в окружность с центром О, а четырёхугольник AECD не является вписанным в эту окружность, так как вершина Е не лежит на окружности.

Если все стороны многоугольника касаются окружности то окружность называют

Треугольник АВС на рисунке 235 является вписанным в окружность с центром О.

Если все стороны многоугольника касаются окружности то окружность называют

Докажем теорему об окружности, описанной около треугольника.

Около любого треугольника можно описать окружность.

Рассмотрим произвольный треугольник АВС. Обозначим буквой О точку пересечения серединных перпендикуляров к его сторонам и проведём отрезки ОА, ОВ и ОС (рис. 235). Так как точка О равноудалена от вершин треугольника АВС, то О А = ОВ = ОС. Поэтому окружность с центром О радиуса ОА проходит через все три вершины треугольника и, значит, является описанной около треугольника АВС. Теорема доказана.

Отметим, что около треугольника можно описать только одну окружность.

В самом деле, допустим, что около треугольника можно описать две окружности. Тогда центр каждой из них равноудалён от его вершин и поэтому совпадает с точкой О пересечения серединных перпендикуляров к сторонам треугольника, а радиус равен расстоянию от точки О до вершин треугольника. Следовательно, эти окружности совпадают.

В отличие от треугольника около четырёхугольника не всегда можно описать окружность.

Например, нельзя описать окружность около ромба, не являющегося квадратом (объясните почему). Если же около четырёхугольника можно описать окружность, то его углы обладают следующим замечательным свойством:

В любом вписанном четырёхугольнике сумма противоположных углов равна 180°.

Это свойство легко установить, если обратиться к рисунку 236 и воспользоваться теоремой о вписанном угле. В самом деле,

Если все стороны многоугольника касаются окружности то окружность называют

Если все стороны многоугольника касаются окружности то окружность называют

Если все стороны многоугольника касаются окружности то окружность называют

Оказывается, верно и обратное:

Если сумма противоположных углов четырёхугольника равна 180°, то около него можно описать окружность (см. задачу 729).

Задачи

689. В равнобедренном треугольнике основание равно 10 см, а боковая сторона равна 13 см. Найдите радиус окружности, вписанной в этот треугольник.

690. Найдите основание равнобедренного треугольника, если центр вписанной в него окружности делит высоту, проведённую к основанию, в отношении 12 : 5, считая от вершины, а боковая сторона равна 60 см.

691. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см, считая от основания. Найдите периметр треугольника.

692. В треугольник АВС вписана окружность, которая касается сторон АВ, ВС и СА в точках Р, Q и R. Найдите АР, РВ, BQ, QC, СВ, RA, если АВ = 10 см, ВС = 12 см, СА = 5 см.

693. В прямоугольный треугольник вписана окружность радиуса г. Найдите периметр треугольника, если: а) гипотенуза равна 26 см, r = 4см; б) точка касания делит гипотенузу на отрезки, равные 5 см и 12 см.

694. Найдите диаметр окружности, вписанной в прямоугольный треугольник, если гипотенуза треугольника равна с, а сумма катетов равна m.

695. Сумма двух противоположных сторон описанного четырёхугольника равна 15 см. Найдите периметр этого четырёхугольника.

696. Докажите, что если в параллелограмм можно вписать окружность, то этот параллелограмм — ромб.

697. Докажите, что площадь описанного многоугольника равна половине произведения его периметра на радиус вписанной окружности.

698. Сумма двух противоположных сторон описанного четырёхугольника равна 12 см, а радиус вписанной в него окружности равен 5 см. Найдите площадь четырёхугольника.

699. Сумма двух противоположных сторон описанного четырёхугольника равна 10 см, а его площадь — 12 см 2 . Найдите радиус окружности, вписанной в этот четырёхугольник.

700. Докажите, что в любой ромб можно вписать окружность.

701. Начертите три треугольника: остроугольный, прямоугольный и тупоугольный. В каждый из них впишите окружность.

702. В окружность вписан треугольник АВС так, что АВ — диаметр окружности. Найдите углы треугольника, если: а) Если все стороны многоугольника касаются окружности то окружность называютBC = 134°; б) Если все стороны многоугольника касаются окружности то окружность называютАС = 70°.

703. В окружность вписан равнобедренный треугольник АВС с основанием ВС. Найдите углы треугольника, если Если все стороны многоугольника касаются окружности то окружность называютВС= 102°.

704. Окружность с центром О описана около прямоугольного треугольника. а) Докажите, что точка О — середина гипотенузы. б) Найдите стороны треугольника, если диаметр окружности равен d, а один из острых углов треугольника равен α.

705. Около прямоугольного треугольника АВС с прямым углом С описана окружность. Найдите радиус этой окружности, если: а) АС = 8 см, ВС = 6 см; б) АС = 18 см, ∠B = 30°.

706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности равен 10 см.

707. Угол, противолежащий основанию равнобедренного треугольника, равен 120°, боковая сторона треугольника равна 8 см. Найдите диаметр окружности, описанной около этого треугольника.

708. Докажите, что можно описать окружность: а) около любого прямоугольника; б) около любой равнобедренной трапеции.

709. Докажите, что если около параллелограмма можно описать окружность, то этот параллелограмм — прямоугольник.

710. Докажите, что если около трапеции можно описать окружность, то эта трапеция равнобедренная.

711. Начертите три треугольника: тупоугольный, прямоугольный и равносторонний. Для каждого из них постройте описанную окружность.

Ответы к задачам

689. Если все стороны многоугольника касаются окружности то окружность называютсм.

692. АР =1,5 см, РВ = 8,5 см, BQ = 8,5 см, QC = 3,5 см, CR= 3,5 см, RА = 1,5 см.

693. а) 60 см; б) 40 см.

702. a) ∠A = 67°, ∠B = 23°, ∠C = 90°; б) ∠A = 55°, ∠B = 35°, ∠C = 90°.

703. ∠A = 51°, ∠B = ∠C = 64°30′ или ∠A= 129°, ∠B = ∠C = 25°30′.

704. 6) d, d sin α, d cos α.

705. a) 5 cm; б) 18см. Указание. Воспользоваться задачей 704.

709. Указание. Воспользоваться свойством углов вписанного четырёхугольника.

710. Указание. Воспользоваться задачей 659.

Видео:Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать

Геометрия 8 класс (Урок№32 - Вписанная окружность.)

Если все стороны многоугольника касаются окружности, то окружность называется вписанной в многоугольник, а многоугольник — описанным около этой окружности. — презентация

Презентация была опубликована 8 лет назад пользователемТарас Зотов

Похожие презентации

Видео:Пара касающихся окружностей | Осторожно, спойлер! | Борис Трушин |Скачать

Пара касающихся окружностей | Осторожно, спойлер! | Борис Трушин |

Презентация на тему: » Если все стороны многоугольника касаются окружности, то окружность называется вписанной в многоугольник, а многоугольник — описанным около этой окружности.» — Транскрипт:

3 Если все стороны многоугольника касаются окружности, то окружность называется вписанной в многоугольник, а многоугольник — описанным около этой окружности.

4 Центр вписанной окружности – точка пересечения биссектрис всех внутренних углов многоугольника. Радиус вписанной окружности вычисляется по формуле: r= S/p, где S – площадь, а p – полупериметр многоугольника.

5 Не во всякий многоугольник можно вписать окружность.

6 В любом описанном четырёхугольнике суммы противоположных сторон равны. А В АВ + СД = ВС + АД С Д Если суммы противоположных сторон выпуклого четырёхугольника равны, то в него можно вписать окружность.

7 В любой треугольник можно вписать окружность. Центр окружности — точка пересечения биссектрис треугольника. А О В С

8 Если все вершины многоугольника лежат на окружности, то окружность называется описанной около многоугольника, а многоугольник — вписанным в эту окружность.

9 Центр описанной окружности лежит в точке пересечения серединных перпендикуляров, проведенных к сторонам многоугольника. Радиус вычисляется как радиус окружности, описанной около треугольника, определённого любыми тремя вершинами данного многоугольника.

10 Около любого треугольника можно описать окружность. Центр окружности — точка пересечения серединных перпендикуляров к сторонам треугольника. R= = = R =

11 Около четырёхугольника не всегда можно описать окружность.

12 Около четырёхугольника можно описать окружность тогда и только тогда, когда сумма его противоположных углов равна 180°. A + C = B + D=180°

13 В прямоугольном треугольнике центр описанной окружности совпадает с серединой гипотенузы.(гипотенуза является диаметром) Радиус вписанной окружности находится по формуле:, где а и b – катеты, с – гипотенуза. R = d/2 О r =

14 Только около равнобокой трапеции можно описать окружность. В равнобедренную трапецию можно вписать окружность, если боковая сторона равна средней линии.

15 Площадь треугольника равна 24, а радиус вписанной окружности равен 2. Найдите периметр этого треугольника. Решение. Из формулы S=pr, где p — полупериметр, находим, что периметр описанного многоугольника равен отношению удвоенной площади к радиусу вписанной окружности: Ответ: 24.

16 Найдите радиус окружности, вписанной в правильный треугольник, высота которого равна 6. Решение. Радиус окружности, вписанной в равносторонний треугольник, равен одной трети высоты. Поэтому он равен 2. Ответ: 2.

17 Радиус окружности, вписанной в правильный треугольник, равен 6. Найдите высоту этого треугольника. Решение. значит, Ответ: 18.

18 Сторона правильного треугольника равна 3. Найдите радиус окружности, вписанной в этот треугольник. Решение. Радиус вписанной в треугольник окружности равен отношению площади к полупериметру: Ответ: 0,5..

19 К окружности, вписанной в треугольник ABC, проведены три касательные. Периметры отсеченных треугольников равны 6, 8, 10. Найдите периметр данного треугольника. Отрезки касательных, проведенных к окружности из точек K,H,O,F,N,M соответственно равны друг другу. Поэтому Следовательно, Ответ: 24. Решение.

20 Катеты равнобедренного прямоугольного треугольника равны Найдите радиус окружности, вписанной в этот треугольник. Решение. Ответ: 1.

21 Решение. Треугольник правильный, значит, все углы равны по 60°. Сторона правильного треугольника равна3. Найдите радиус окружности, описанной около этого треугольника. Ответ: 1.

22 Гипотенуза прямоугольного треугольника равна 12. Найдите радиус описанной окружности этого треугольника. Решение. Вписанный угол, опирающийся на диаметр окружности, является прямым, значит, гипотенуза является диаметром и R = 12/2=6. Ответ: 6.

23 Сторона треугольника равна 1. Противолежащий ей угол равен 30°. Найдите радиус окружности, описанной около этого треугольника. Решение. По теореме синусов имеем: Ответ: 1.

24 Боковые стороны равнобедренного треугольника равны 40, основание равно 48. Найдите радиус описанной окружности этого треугольника. Решение. Для нахождения площади треугольника, воспользуемся формулой Герона S = Ответ: 25

25 Боковые стороны трапеции, описанной около окружности, равны 3 и 5. Найдите среднюю линию трапеции. Решение. В выпуклый четырёхугольник можно вписать окружность тогда и только тогда, когда АВ + СД = ВС + АД Ответ: 4.

26 Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как 1:2:3. Найдите большую сторону этого четырехугольника, если известно, что его периметр равен 32. Решение. В выпуклый четырехугольник можно вписать окружность тогда и только тогда, когда АВ+СД = АД+ВС. Пусть меньшая сторона равна х, тогда х +3х=Р/2; 4х=16; х=4. Тогда большая сторона равна Р/2 – 4=16-4=12 Ответ: 12

27 Около трапеции описана окружность. Периметр трапеции равен 22, средняя линия равна 5. Найдите боковую сторону трапеции. Решение. Трапеция – равнобедренная, т. к. вокруг неё описана окружность. Ответ: 6.

28 Боковая сторона равнобедренной трапеции равна ее меньшему основанию, угол при основании равен 60°, большее основание равно 12. Найдите радиус описанной окружности этой трапеции. Решение. Окружность, описанная вокруг трапеции, описана и вокруг треугольника ADC. Это треугольник равнобедренный, угол при вершине равен 120°, углы при основании равны 30°. Найдем его боковую сторону: AD=DC=AB-2AH=AB-2ADcos 60°=12-AD, откуда AD=6 Ответ: 6.

29 Углы А, В и С четырехугольника АВСД относятся как1:2:3. Найдите угол Д, если около данного четырехугольника можно описать окружность. Ответ дайте в градусах. Решение. Пусть угол А равен х°. Учитывая, что сумма противоположных углов во вписанном четырёхугольнике равна 180°, получим: х+3х=180; 4х=180; х=45. Угол В равен 2х=2·45=90. Тогда угол Д равен =90. Ответ: 90. Ответ: 90º

30 Два угла вписанного в окружность четырехугольника равны 82° и 58°. Найдите больший из оставшихся углов. Ответ дайте в градусах. Решение. Так как во вписанном четырёхугольнике сумма противоположных углов равна 180°, то больший угол равен 180° — 58°= 122° Ответ: 122.

31 Периметр правильного шестиугольника равен 72. Найдите диаметр описанной окружности. Решение. Рассмотрим треугольник АОВ. Он равносторонний, т.к. АО=ОВ=R и угол АОВ равен 60°, тогда D=2R=2АО= 2АВ=2·12=24 Ответ: 24.

32 Около окружности, радиус которой равен 3/2, описан правильный шестиугольник. Найдите радиус окружности, описанной около этого шестиугольника. Решение. Угол правильного шестиугольника равен 120°, тогда угол ОАH в прямоугольном треугольнике OAH равен 60°. Следовательно, Ответ: 1.

33 C4. В треугольнике АВС известны стороны: АВ=6, ВС=8, АС=9. Окружность, проходящая через точки А и С, пересекает прямые ВА и ВС соответственно в точках K и L, отличных от вершин треугольника. Отрезок KL касается окружности, вписанной в треугольник ABC. Найдите длину отрезка KL. Решение. Обе точки K и L не могут лежать вне треугольника, поскольку в этом случае отрезок KL не может касаться вписанной окружности. Значит, по крайней мере одна из этих точек лежит на стороне треугольника. 1)Пусть обе точки K и L лежат на сторонах треугольника. Четырехугольник AKLC вписанный, следовательно, Значит, треугольник ABC подобен треугольнику LBK, так как угол ABC общий. Пусть коэффициент подобия равен k, тогда BL=kAB, BK=kBC, KL=kAC. Суммы противоположных сторон описанного четырехугольника AKLC равны: Подставляя известные значения сторон, находим k = = KL=kAC=45/23

34 2)Пусть точка K лежит на продолжении стороны AB. Углы AKL и ACL равны, поскольку опираются на одну дугу. Значит, треугольник ABC подобен треугольнику LBK, так как угол ABC общий. Более того, они описаны около одной и той же окружности. Следовательно, коэффициент подобия равен 1, то есть, треугольники LBK и ABC равны, поэтому KL=AC= 9. Заметим, что BK=BC>AB и точка K действительно лежит на продолжении стороны AB. Если точка L лежит на продолжении стороны BC, то BL>BC, но, аналогично предыдущему случаю, получаем BL=AB AB и точка K действительно лежит на продолжении стороны AB. Если точка L лежит на продолжении стороны BC, то BL>BC, но, аналогично предыдущему случаю, получаем BL=AB»>

35 C 4.Прямая, перпендикулярная гипотенузе прямоугольного треугольника, отсекает от него четырехугольник, в который можно вписать окружность. Найдите радиус окружности, если отрезок этой прямой, заключённый внутри треугольника, равен 24, а отношение катетов треугольника равно 5/12. Решение. Обозначим треугольник АВС, отношение катетов равен 5/12, АС=5х-катет, ВС=12х-катет, АВ=13х гипотенуза. Заметим, что окружность, о которой говорится в условии, окружность, вписанная в треугольник ABC. Пусть О её центр, а D и Е точки касания с катетами АС и ВС соответственно. Тогда, так как ODCE квадрат, радиус этой окружности. OD=EC= = = 2x. Пусть прямая MN перпендикулярна АВ, касается окружности, пересекает АВ в точке М, а АС в точке N. Прямоугольный т реугольник ANM подобен треугольнику ABC. В нём MN=24, AM=26, AN=10. У описанного четырёхугольника суммы противоположных сторон равны: ВС+MN=BM+CN; 12х+24=(13х-26)+(5х-10), откуда находим: х=10. r=2x=20

36 Пусть прямая MN перпендикулярна АВ, касается окружности, пересекает АВ в точке М, а ВС в точке N. Прямоугольный треугольник NBM подобен треугольнику ABC. В нём MN=24, BM=57,6, BN=62,4. У описанного четырёхугольника суммы противоположных сторон равны: MN+AC=CN+AM; 24+5x=(12x-62,4)+(13x-57,6), откуда находим: х=7,2. r=2x=14,4 Ответ: 20 или 14,4.

📽️ Видео

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Окружность, вписанная в правильный многоугольник | Геометрия 7-9 класс #106 | ИнфоурокСкачать

Окружность, вписанная в правильный многоугольник | Геометрия 7-9 класс #106 | Инфоурок

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

ГЕОМЕТРИЯ 8 класс : Вписанная окружностьСкачать

ГЕОМЕТРИЯ 8 класс : Вписанная окружность

8 класс. Четырехугольник и окружностьСкачать

8 класс.  Четырехугольник  и окружность

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)

Вписанные и описанные многоугольникиСкачать

Вписанные и описанные многоугольники

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.

Окружность и треугольникСкачать

Окружность и треугольник

Геометрия 9 класс : Правильные многоугольникиСкачать

Геометрия 9 класс : Правильные многоугольники

Уроки геометрии. Одно замечательное свойство четырехугольника, описанного вокруг окружности.Скачать

Уроки геометрии. Одно замечательное свойство четырехугольника, описанного вокруг окружности.

9 класс. Правильный многоугольник, вписанный в окружность и описанный около окружностиСкачать

9 класс. Правильный многоугольник, вписанный в окружность и описанный около окружности

Задача №16. Пересекающиеся и касающиеся окружности.Скачать

Задача №16. Пересекающиеся и касающиеся окружности.
Поделиться или сохранить к себе: