Емкость конденсаторов соединенных треугольником

Содержание
  1. Соединение конденсаторов
  2. Параллельное соединение конденсаторов.
  3. Последовательное соединение конденсаторов.
  4. Последовательно-параллельное (смешанное) соединение конденсаторов
  5. Параллельное и последовательное соединение конденсаторов, схемы, расчет
  6. Что такое конденсатор и его основные характеристики
  7. Параллельное и комбинированное соединение
  8. Что он из себя представляет и как работает
  9. Где и для чего используются
  10. Электрическая емкость
  11. Как правильно соединять конденсаторы
  12. Нет конденсатора нужного номинала: что делать
  13. Соединение конденсаторов в батарею: способы выполнения
  14. Параллельное соединение: схемы, правила
  15. Последовательное соединение: способ, используемый реже
  16. Смешанное соединение конденсаторов: схема, причины необходимости применения
  17. Ток при последовательном соединении конденсаторов
  18. Конденсатор и постоянный ток
  19. Конденсатор и переменный ток
  20. Законы последовательного и параллельного соединения проводников
  21. Смешанное соединение проводников
  22. Как проверить качество соединения конденсаторов в цепи
  23. Сравнение различных вариантов
  24. Падение напряженности и общая емкость
  25. Схемы соединения конденсаторов — расчет емкости
  26. Последовательное соединение конденсаторов
  27. Параллельное соединение конденсаторов
  28. Смешанное соединение конденсаторов
  29. Пример расчета

Видео:❗ Как подсчитать соединения КОНДЕНСАТОРОВ?❗ Последовательное и параллельно соединение. Решение задачСкачать

❗ Как подсчитать соединения КОНДЕНСАТОРОВ?❗ Последовательное и параллельно соединение. Решение задач

Соединение конденсаторов

В электрических цепях применяются различные способы соединения конденсаторов. Соединение конденсаторов может производиться: последовательно, параллельно и последовательно-параллельно (последнее иногда называют смешанное соединение конденсаторов). Существующие виды соединения конденсаторов показаны на рисунке 1.

Емкость конденсаторов соединенных треугольником

Рисунок 1. Способы соединения конденсаторов.

Видео:Соединение конденсаторов (часть 1)Скачать

Соединение конденсаторов (часть 1)

Параллельное соединение конденсаторов.

Если группа конденсаторов включена в цепь таким обра­зом, что к точкам включения непосредственно присоединены пластины всех конденсаторов, то такое соединение называется параллельным соединением конденсаторов (рисунок 2.).

Емкость конденсаторов соединенных треугольником

Рисунок 2. Параллельное соединение конденсаторов.

При заряде группы конденсаторов, соединенных параллель­но, между пластинами всех конденсаторов будет одна и та же разность потенциалов, так как все они заряжаются от одного и того же источника тока. Общее же количе­ство электричества на всех конденсаторах будет равно сумме количеств электричества, помещающихся на каждом из кон­денсаторов, так как заряд каждого их конденсаторов проис­ходит независимо от заряда других конденсаторов данной группы. Исходя из этого, всю систему параллельно соединен­ных конденсаторов можно рассматривать как один эквива­лентный (равноценный) конденсатор. Тогда общая емкость конденсаторов при параллельном соединении равна сумме емкостей всех соединенных конденсаторов.

Обозначим суммарную емкость соединенных в батарею конденсаторов бук­вой Собщ, емкость первого конденсатора С1 емкость второго С2 и емкость третьего С3. Тогда для параллельного соединения конденсаторов будет справедлива следующая формула:

Емкость конденсаторов соединенных треугольником

Последний знак + и многоточие указывают на то, что этой формулой можно пользоваться при четырех, пяти и во­обще при любом числе конденсаторов.

Видео:Параллельное и последовательное соединение конденсаторов.Скачать

Параллельное и последовательное соединение конденсаторов.

Последовательное соединение конденсаторов.

Если же соединение конденсаторов в батарею производится в виде цепочки и к точкам включения в цепь непосредственно присоединены пластины только первого и последнего конденсаторов, то такое соединение конденсаторов называется последо­вательным (рисунок 3).

Емкость конденсаторов соединенных треугольником

Рисунок 2. Последовательное соединение конденсаторов.

При последовательном соединении все конденса­торы заряжаются одинаковым количеством электричества, так как непосредственно от источника тока заряжаются только крайние пластины (1 и 6), а остальные пластины (2, 3, 4 и 5) заря­жаются через влияние. При этом заряд пла­стины 2 будет равен по величине и противо­положен по знаку за­ряду пластины 1, заряд пластины 3 будет равен по величине и противоположен по знаку заряду пла­стины 2 и т. д.

Напряжения на различных конденсаторах будут, вообще говоря, различными, так как для заряда одним и тем же количеством электричества конденсаторов различной емкости всегда требуются различные напряжения. Чем меньше емкость конденсатора, тем большее напряжение необходимо для того, чтобы зарядить этот конденсатор требуемым количеством электричества, и наоборот.

Таким образом, при заряде группы конденсаторов, соединенных последовательно, на конденсаторах малой емкости напряжения будут больше, а на конденсаторах большой емкости — меньше.

Аналогично предыдущему случаю можно рассматривать всю группу конденсаторов, соединенных последовательно, как один эквивалентный конденсатор, между пластинами которого существует напряжение, равное сумме напряжений на всех конденсаторах группы, а заряд которого равен заряду любого из конденсаторов группы.

Возьмем самый маленький конденсатор в группе. На нем должно быть самое большое напряжение. Но напряжение на этом конденсаторе составляет только часть общего напряже­ния, существующего на всей группе конденсаторов. Напря­жение на всей группе больше напряжения на конденсаторе, имеющем самую малую емкость. А отсюда непосредственно следует, что общая емкость группы конденсаторов, соединен­ных последовательно, меньше емкости самого малого конден­сатора в группе.

Для вычисления общей емкости при последовательном со­единении конденсаторов удобнее всего пользоваться следую­щей формулой:

Емкость конденсаторов соединенных треугольником

Для частного случая двух последовательно соединенных конденсаторов формула для вычисления их общей емкости будет иметь вид:

Емкость конденсаторов соединенных треугольником

Видео:Последовательное и параллельное соединение конденсаторов. Схемы и расчёты для конденсаторовСкачать

Последовательное и параллельное соединение конденсаторов. Схемы и расчёты для конденсаторов

Последовательно-параллельное (смешанное) соединение конденсаторов

Последовательно-параллельным соединением конденсаторов называется цепь имеющая в своем составе участки, как с параллельным, так и с последовательным соединением конденсаторов.

На рисунке 4 приведен пример участка цепи со смешанным соединением конденсаторов.

Емкость конденсаторов соединенных треугольником

Рисунок 4. Последовательно-параллельное соединение конденсаторов.

При расчете общей емкости такого участка цепи с последовательно-параллельным соединением конденсаторов этот участок разбивают на простейшие участки, состоящие только из групп с последовательным или параллельным соединением конденсаторов. Дальше алгоритм расчета имеет вид:

1. Определяют эквивалентную емкость участков с последовательным соединением конденсаторов.

2. Если эти участки содержат последовательно соединенные конденсаторы, то сначала вычисляют их емкость.

3. После расчета эквивалентных емкостей конденсаторов перерисовывают схему. Обычно получается цепь из последовательно соединенных эквивалентных конденсаторов.

4. Рассчитывают емкость полученной схемы.

Один из примеров расчета емкости при смешанном соединении конденсаторов приведен на рисунке 5.

Емкость конденсаторов соединенных треугольником

Рисунок 5. Пример расчета последовательно-параллельного соединения конденсаторов.

Подробнее о расчетах соединения конденсаторов можно узнать в мультимедийном учебнике по основам электротехники и электроники:

Емкость конденсаторов соединенных треугольником

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Видео:🟢 Секрет соединение конденсаторовСкачать

🟢 Секрет соединение конденсаторов

Параллельное и последовательное соединение конденсаторов, схемы, расчет

Видео:Как рассчитать ёмкость рабочего и пускового конденсатора для подключения электродвигателя 380 от 220Скачать

Как рассчитать ёмкость рабочего и пускового конденсатора для подключения электродвигателя 380 от 220

Что такое конденсатор и его основные характеристики

Конденсатор — это радиодеталь, которая работает как накопитель электрической энергии. Чтобы понятнее было, как он работает, его можно представить как своего рода небольшой аккумулятор. Обозначается двумя параллельными чёрточками.

Емкость конденсаторов соединенных треугольником

Обозначения различных типов конденсаторов на схемах. Чаще всего из строя выходят электролитические конденсаторы, так что стоит запомнить их обозначение

Основная характеристика конденсатора любого типа — ёмкость. Это то количество заряда, которое он в состоянии накопить. Измеряется в Фарадах (сокращенно просто буква F или Ф), а вернее, в более «мелких» единицах:

  • микрофарадах — мкФ это 10-6 фарада,
  • нанофарадах — нФ это 10-9 фарада;
  • пикофарадах — пФ это 10-12 фарада.

Вторая важная характеристика — номинальное напряжение. Это то напряжение, при котором гарантирована длительная безотказная работа. Например, 4700 мкФ 35 В, где 35 В — это номинальное напряжение 35 вольт.

У крупных по размеру конденсаторов, ёмкость и напряжение указаны на корпусе

Нельзя ставить конденсатор в цепь с более высоким напряжением чем то, которое на нём указано. В противном случае он быстро выйдет из строя.

Можно использовать конденсаторы на 50 вольт вместо конденсаторов на 25 вольт. Но это порой нецелесообразно, так как те, которые рассчитаны на более высокое напряжение, дороже, да и габариты у них больше.

Видео:ТОЭ. Расчет цепи с конденсаторами. Найти общую емкость цепи, напряжение и заряд каждого конденсатораСкачать

ТОЭ. Расчет цепи с конденсаторами. Найти общую емкость цепи, напряжение и заряд каждого конденсатора

Параллельное и комбинированное соединение

Выделяются другие способы соединения, а именно комбинированное и параллельное подключение конденсаторов. Для них справедливы иные физические законы.

Емкость конденсаторов соединенных треугольником
Параллельные конденсаторы

Напряжение всей группы при параллельном соединёнии конденсаторов равно вольтажу самого наименьшего из них. Т.е., если имеется цепь из трёх конденсаторов на 16, 25 и 50 В, то максимум, который на них можно подать, это 16 В. В такой схеме к каждой отдельной ёмкости будет приложено полное напряжение источника питания.

Ёмкость такой батареи складывается. Вызвано это виртуальным сложением площадей обкладок всех отдельных конденсаторов. На языке физики это выглядит так:

Cобщ.пар = С1 + С2 + … + Сn.

Зачем нужно такое соединение? Оно используется для увеличения ёмкости конденсаторов, например, в высоковольтной части сварочных инверторов и многих мощных блоках питания.

Дополнительная информация. Параллельное соединение позволяет снизить общее внутреннее сопротивление сборки, следовательно, и её нагрев. Тем самым можно увеличить срок службы ёмкости.

Комбинированное (смешанное) соединение наиболее сложное. В нём встречаются как последовательные, так и параллельные элементы. Расчёт параметров таких схем даётся с опытом. Для простоты его принято изучать по треугольнику, разбивая на более простые части.

Емкость конденсаторов соединенных треугольником
Смешанное соединение

Из схемы очевидно, что конденсаторы C1 и C2 включены последовательно. Их общую ёмкость можно рассчитать по вышеописанной формуле – Cобщ.посл. Далее схема упрощается. Здесь уже имеются два параллельных конденсатора Cобщ.посл и C3. Вычисляется по вышестоящей формуле Cобщ.пар. В итоге сложный для восприятия элемент цепи превращается в один эквивалентный конденсатор. Данная методика описывает алгоритм упрощения, с помощью которого можно рассчитывать гораздо более сложные конденсаторные фигуры (квадрат, куб и т.п.).

Видео:Как протекает ток через несколько конденсаторов последовательно соединенныхСкачать

Как протекает ток через несколько конденсаторов последовательно соединенных

Что он из себя представляет и как работает

В самом простейшем случае конденсатор состоит из двух токопроводящих пластин (обкладок), разделённых слоем диэлектрика.

Емкость конденсаторов соединенных треугольником

Между обкладками находится слой диэлектрика — материала плохо проводящего электрический ток

На пластины подаётся постоянный или переменный ток. Вначале, пока энергия накапливается, потребление энергии конденсатором высокое. По мере «наполнения» ёмкости оно снижается. Когда заряд набран полностью, токопотребления вообще нет, источник питания как бы отключается. В это время конденсатор сам начинает отдавать накопленный заряд. То есть, он на время становится своеобразным источником питания. Поэтому его и сравнивают с аккумулятором.

Видео:Как подобрать конденсаторы для подключения трехфазного двигателя в однофазную сеть.Скачать

Как подобрать конденсаторы для подключения трехфазного двигателя в однофазную сеть.

Где и для чего используются

Как уже говорили, сложно найти схему без конденсаторов. Их применяют для решения самых разных задач:

  • Для сглаживания скачков сетевого напряжения. В таком случае их ставят на входе устройств, перед микросхемами, которые требовательны к параметрам питания.
  • Для стабилизации выходного напряжения блоков питания. В таком случае надо искать их перед выходом.Емкость конденсаторов соединенных треугольникомЧасто можно увидеть электролитические цилиндрические конденсаторы
  • Датчик прикосновения (тач-пады). В таких устройствах оной из «пластин» конденсаторов является человек. Вернее, его палец. Наше тело обладает определённой проводимостью. Это и используется в датчиках прикосновения.
  • Для задания необходимого ритма работы. Время заряда конденсаторов разной ёмкости отличается. При этом цикл заряд/разряд конденсатора остаётся величиной постоянной. Это и используется в цепях, где надо задавать определённый ритм работы.
  • Ячейки памяти. Память компьютеров, телефонов и других устройств — это огромное количество маленьких конденсаторов. Если он заряжен — это единица, разряжен — ноль.
  • Есть стартовые конденсаторы, которые помогают «разогнать» двигатель. Они накапливают заряд, потом резко его отдают, создавая требуемый «толчок» для разгона мотора.
  • В фотовспышках. Принцип тот же. Сначала накапливается заряд, затем выдаётся, но преобразуется в свет.

Конденсаторы встречаются часто и область их применения широка. Но надо знать как правильно их подключить.

Видео:Рассчитать ёмкость конденсатора для трёхфазного двигателя в однофазной сети. КАК Я,ЭТО ДЕЛАЮ!!!Скачать

Рассчитать ёмкость конденсатора для  трёхфазного двигателя в однофазной сети. КАК Я,ЭТО ДЕЛАЮ!!!

Электрическая емкость

При соединении приборов для конденсации заряда, как правило, техника интересует электрическая емкость, которая получится в итоге.

Электроемкость показывает способность двухполюсника накапливать в себе заряд и измеряется в фарадах. Может показаться, что чем выше это значение, тем лучше, но на практике не существует возможности создать все возможные на свете емкости, более того, часто это и не нужно, так как во всех приборах, использующихся повседневно, применяются стандартные приборы для конденсации.

Можно соединить несколько приборов для конденсации в цепь, создав одну конденсирующую емкость, при этом значение характерной величины будет зависеть от типа подключения, и для его расчета есть давно известные формулы.

Емкость конденсаторов соединенных треугольником

Видео:Урок 239. Соединение конденсаторов в батареиСкачать

Урок 239. Соединение конденсаторов в батареи

Как правильно соединять конденсаторы

Чтобы узнать, как подключить конденсатор правильно, нужно разобраться, к какому именно типу он относится. Данных электронных приборов существует огромное множество. Все конденсаторы подразделяются на две группы:

  • полярные (электролитические) – подключая их, необходимо учитывать, где у детали плюсовой, а где минусовой контакт;
  • неполярные (все остальные) – эти конденсаторы способны работать от переменного тока, у них не бывает положительных и отрицательных клемм.

Затем нужно учесть конструкцию электронного компонента. С этой точки зрения конденсаторы могут быть:

  • Выводными. Подключаются к плате с помощью тонких медных ножек, покрытых (лужёных) для защиты слоем припоя.
  • Для поверхностного монтажа (SMD). В основном применяются в компактной электронике. Очень миниатюрны, часто в поперечнике не превышают 1 мм.

Также важно принять во внимание рабочее напряжение конденсатора. Это особенно принципиально для электролитических приборов данного типа, ведь при превышении их номинального вольтажа они, вероятнее всего, взорвутся, разбрызгивая во все стороны кипящий электролит.

Важно! На крышке электролитического конденсатора имеются две насечки. Эти слабые места служат для мгновенной разгерметизации изделия в случае избыточного внутреннего давления. При ремонте и наладке оборудования следует избегать направленности насечек на лицо или одежду. При внештатной ситуации с их стороны может брызнуть горячий электролит.

Не менее критичен порог максимального напряжения и для прочих видов конденсаторов, особенно имеющих мелкие габариты и не способных длительно выдерживать перегрузки.

Последний, но не наименее важный фактор, который следует учесть при соединении конденсаторов, – это их ёмкость. Она измеряется в микрофарадах (в честь Майкла Фарадея). Это их главная характеристика, поэтому конденсаторы часто называют электрическими ёмкостями. В некоторых электронных устройствах этот параметр может существенно отклоняться как в меньшую, так и в большую сторону. В других – недопустимо погрешность и на 1 %.

Видео:Подключение конденсаторов к электродвигателюСкачать

Подключение конденсаторов к электродвигателю

Нет конденсатора нужного номинала: что делать

Очень часто начинающие домашние мастера, обнаружив поломку прибора, стараются самостоятельно обнаружить причину. Увидев сгоревшую деталь, они стараются найти подобную, а если это не удаётся, несут прибор в ремонт. На самом деле, не обязательно, чтобы показатели совпадали. Можно использовать конденсаторы меньшего номинала, соединив их в цепь. Главное – сделать это правильно. При этом достигается сразу 3 цели – поломка устранена, приобретён опыт, сэкономлены средства семейного бюджета.

Попробуем разобраться, какие способы соединения существуют и на какие задачи рассчитаны последовательное и параллельное соединение конденсаторов.
Часто без соединения конденсаторов в батарею не обойтись. Главное – сделать это правильно

Видео:Последовательное соединение конденсаторов (видео 16)| Введение в электрические цепи | ЭлектротехникаСкачать

Последовательное соединение конденсаторов (видео 16)| Введение в электрические цепи | Электротехника

Соединение конденсаторов в батарею: способы выполнения

Существует 3 способа соединения, каждый из которых преследует свою определённую цель:

  1. Параллельное – выполняется в случае необходимости увеличить ёмкость, оставив напряжение на прежнем уровне.
  2. Последовательное – обратный эффект. Напряжение увеличивается, ёмкость уменьшается.
  3. Смешанное – увеличивается как ёмкость, так и напряжение.

Теперь рассмотрим каждый из способов более подробно.

Параллельное соединение: схемы, правила

На самом деле всё довольно просто. При параллельном соединении расчёт общей ёмкости можно вычислить путём простейшего сложения всех конденсаторов. Итоговая формула будет выглядеть следующим образом: Собщ= С₁ + С₂ + С₃ + … + Сn. При этом напряжение на каждом их элементов будет оставаться неизменным: Vобщ= V₁ = V₂ = V₃ = … = Vn.

Получается, что подобный монтаж подразумевает подключение всех пластин конденсаторов к точкам питания. Такой способ встречается наиболее часто. Но может произойти ситуация, когда важно увеличить напряжение. Разберёмся, каким образом это сделать.

Последовательное соединение: способ, используемый реже

При использовании способа последовательного подключения конденсаторов напряжение в цепи возрастает. Оно складывается из напряжения всех элементов и выглядит так: Vобщ= V₁ + V₂ + V₃ +…+ Vn. При этом ёмкость изменяется в обратной пропорции: 1/Собщ= 1/С₁ + 1/С₂ + 1/С₃ + … + 1/Сn. Рассмотрим изменения ёмкости и напряжения при последовательном включении на примере.

Дано: 3 конденсатора с напряжением 150 В и ёмкостью 300 мкф. Подключив их последовательно, получим:

  • напряжение: 150 + 150 + 150 = 450 В;
  • ёмкость: 1/300 + 1/300 + 1/300 = 1/С = 299 мкф.

Выполняют такое соединение в том случае, если есть опасность пробоя диэлектрика конденсатора при подаче напряжения в цепь. Но ведь существует и ещё один способ монтажа.

Полезно знать! Применяют также последовательное и параллельное соединение резисторов и конденсаторов. Это делается с целью снижения подаваемого на конденсатор напряжения и исключения его пробоя. Однако следует учитывать, что напряжения должно быть достаточно для работы самого прибора.

Смешанное соединение конденсаторов: схема, причины необходимости применения

Такое подключение (его ещё называют последовательно-параллельным) применяют в случае необходимости увеличения, как ёмкости, так и напряжения. Здесь вычисление общих параметров немного сложнее, но не настолько, чтобы нельзя было разобраться начинающему радиолюбителю.

Составим алгоритм вычислений.

  • всю схему нужно разбить на отдельные части, высчитать параметры которых просто;
  • высчитываем номиналы;
  • вычисляем общие показатели, как при последовательном включении.

Видео:Подключение электродвигателя 380 на 220ВСкачать

Подключение электродвигателя 380 на 220В

Ток при последовательном соединении конденсаторов

Электрический ток бывает двух видов: постоянным и переменным. Для работы ёмкостей это имеет большое значение.

Конденсатор и постоянный ток

Маркировка танталовых smd конденсаторов

Постоянный ток через конденсатор не проходит вообще. Справедливо это и для линейки из последовательно соединённых ёмкостей. Объясняется такой эффект опять же конструкцией самого электронного прибора. Конденсатор имеет две металлические обкладки. В простых электролитических приборах они сделаны из алюминиевой фольги. Между ними расположен тонкий слой диэлектрика (оксид алюминия). Если приложить к обкладкам разность потенциалов (напряжение), то ток потечёт, но только очень короткое время, пока конденсатор полностью ни зарядится. Далее движение носителей заряда прекратится, т.к. они не смогут пройти через диэлектрик. В этот момент можно сказать, что электрический ток равен нулю, и конденсатор его не пропускает.

Конденсатор и переменный ток

При переменном токе носители заряда периодически меняют своё направление. В случае с бытовой сетью изменение происходит 50 раз в секунду. Поэтому говорят, что частота тока в розетке равна 50 Гц.

Важно! Конденсаторы способны накапливать и длительно удерживать заряд. При работе с ёмкостями, заряженными от сети 220 В, их всегда следует разряжать сопротивлением в 100-1000 ом. Несоблюдение правила однажды приведёт к неприятному удару током.

Конденсатор определённо пропустит переменный ток, но не факт, что весь. Количество носителей заряда, которые смогут пройти через этот электронный прибор, зависит от ёмкости конденсатора, приложенного к нему напряжения и частоты смены направления зарядов. Математически это выражается так:

Здесь I – это электрический ток с частотой f, проходящий через конденсатор ёмкостью C, если к его обкладкам приложить напряжение U. 2 – просто число, а p = 3.14.

Такая способность конденсаторов ограничивать переменный ток широко применяется в аудиотехнике для построения различных звуковых фильтров. Изменяя ёмкость, можно влиять на частоту сигнала, которую она пропускает.

Фильтр на основе ёмкости

Видео:Урок 238. Емкость плоского конденсатора. Классификация конденсаторовСкачать

Урок 238. Емкость плоского конденсатора. Классификация конденсаторов

Законы последовательного и параллельного соединения проводников

Для детального понимания на практике обоих типов соединений, приведем формулы, объясняющие законы данных типов соединений. Расчет мощности при параллельном и последовательном типе соединения отличается.

При последовательной схеме имеется одинаковая сила тока во всех проводниках:

Согласно закону Ома, данные типы соединений проводников в разных случаях объясняются иначе. Так, в случае последовательной схемы, напряжения равны друг другу:

U1 = IR1, U2 = IR2.

Помимо этого, общее напряжение равно сумме напряжений отдельно взятых проводников:

U = U1 + U2 = I(R1 + R2) = IR.

Полное сопротивление электроцепи рассчитывается как сумма активных сопротивлений всех проводников, вне зависимости от их числа.

В случае параллельной схемы совокупное напряжение цепи аналогично напряжению отдельных элементов:

А совокупная сила электротока рассчитывается как сумма токов, которые имеются по всем проводникам, расположенным параллельно:

Чтобы обеспечить максимальную эффективность электрических сетей, необходимо понимать суть обоих типов соединений и применять их целесообразно, используя законы и рассчитывая рациональность практической реализации.

Емкость конденсаторов соединенных треугольником

Видео:Бесперебойник из конденсаторов Параллельное соединение конденсаторовСкачать

Бесперебойник из конденсаторов  Параллельное соединение конденсаторов

Смешанное соединение проводников

Последовательная и параллельная схема соединения сопротивления могут сочетаться в одной электросхеме при необходимости. К примеру, допускается подключение параллельных резисторов по последовательной схеме к другому резистору или их группе, такое тип считается комбинированным или смешанным.

Емкость конденсаторов соединенных треугольником

В таком случае совокупное сопротивление рассчитывается посредством получения сумм значений для параллельного соединения в системе и для последовательного. Сначала необходимо рассчитывать эквивалентные сопротивления резисторов в последовательной схеме, а затем элементов параллельного. Последовательное соединение считается приоритетным, причем схемы такого комбинированного типа часто используются в бытовой технике и приборах.

Итак, рассматривая типы подключений проводников в электроцепях и основываясь на законах их функционирования, можно полностью понять суть организации схем большинства бытовых электроприборов. При параллельном и последовательном соединениях расчет показателей сопротивления и силы тока отличается. Зная принципы расчета и формулы, можно грамотно использовать каждый тип организации цепей для подключения элементов оптимальным способом и с максимальной эффективностью.

Видео:ТАКОЕ НЕ ПОКАЗЫВАЮТ В ВУЗаз - КОНДЕНСАТОР #конденсатор #электроника #емкостьСкачать

ТАКОЕ НЕ ПОКАЗЫВАЮТ В ВУЗаз - КОНДЕНСАТОР  #конденсатор #электроника #емкость

Как проверить качество соединения конденсаторов в цепи

Самый идеальный случай, когда у нас на руках имеется соответствующего типа вольтметр. Он стоит в пределах одной тысячи рублей.

Это не так много, учитывая, что вкупе мы получаем прибор для измерения сопротивлений, постоянного и переменного напряжения, токов.

Гнездо под измерение конденсатор (см. фото слева) представляет собой две узкие щели, куда должны вставляться ножки.

По нашим наблюдениям нет разницы, какой стороной вставлять электролитический конденсатор. Хотя лучше все же руководствоваться инструкцией по эксплуатации.

Ззатем как-то нужно промаркировать их, либо разложить по нарисованной на бумаге схеме, где уже проставлять все цифры (кстати, так обычно и делается во всей китайской технике).

Затем следует вычислить по формулам, какое именно значение должно получиться и проверить это тестером. Не получается? Значит, качество контактов плохое – меньше применяйте скруток.

Если необходимо увеличить общую емкость конденсаторов, то их соединяют между собой параллельно (рис. 9, а

). При этом способе соединения общая площадь пластин увеличивается по сравнению с площадью пластины каждого конденсатора.
Общая емкость конденсаторов, соединенных параллельно, равна сумме емкостей отдельных конденсаторов и вычисляется по формуле
Собщ=С1 + С2+С3+

Это можно подтвердить следующим образом.

Соединенные параллельно конденсаторы находятся под одним и тем же напряжением, равным U вольт, а общий заряд этих конденсаторов равен q кулонов. При этом каждый конденсатор соответственно получает заряд q 1 , q 2 , q 3, и т. д. Следовательно,

q общ = q 1 + q 2 + q 3 +

Из формулы (8) вытекает, что заряд

q общ = С общ U (11)

а заряды q 1 = С 1 U; q 2 = С 2 U; q 3 = С 3 U.

Подставив эти выражения в формулу (11), получим:

С общ U= С 1 U + С 2 U + С 3 U.

Разделив левую и правую части этого равенства на равную для всех конденсаторов величину U, после сокращения найдем:

С общ = С 1 + С 2 + С 3

. Три конденсатора емкостью С 1 =2
мкф
; C 2 =0,1
мкф
и C 3 =0,5
мкф
соединены параллельно.

Вычислить их общую емкость.

С общ = С 1 + С 2 + С 3 =2+00,1+0,5=2,6 мкф.

Общую емкость конденсаторов, имеющих одинаковую емкость и соединенных параллельно, можно вычислить по формуле

где С — емкость одного конденсатора,

n — число конденсаторов.

Пять конденсаторов емкостью 2
мкф
каждый соединены параллельно. Определить их общую емкость.

С общ = Сn =2·5=10 мкф.

Конденсаторы соединяют последовательно (рис. 9, б), когда рабочее напряжение установки превышает напряжение, на которое рассчитана изоляция одного конденсатора. В этом случае правую пластину первого конденсатора соединяют с левой пластиной второго, правую пластину второго — с левой пластиной третьего и т. д. Общая емкость конденсаторов при таком соединении уменьшается. Величина, обратная общей емкости конденсаторов, соединенных последовательно , равна сумме обратных величин емкостей отдельных конденсаторов:

Это можно подтвердить следующим образом. Общее напряжение на конденсаторах U общ а на каждом конденсаторе U 1 , U 2 , U 3 , тогда

U общ = U 1 +U 2 + U 3 .

Из Формулы (8) следует, что напряжение

Подставив эти выражения в формулу (14), получим:

Разделим левую и правую части этого равенства на величину q и после сокращения найдем:

Пример. Три конденсатора С1=2 мкф, С2=4 мкф и С3=8 мкф соединены последовательно. Определить их общую емкость.

Если последовательно соединены конденсаторы, имеющие одинаковую емкость, то их общую емкость можно вычислить по формуле

Четыре конденсатора емкостью 1000 пф каждый соединены последовательно. Определить их общую емкость. Решение.

Если последовательно соединены два конденсатора различной емкости, то их общую емкость можно найти по формуле

Два конденсатора С 1 =200 пф

и С 2 =300
пф
соединены последовательно. Вычислить их общую емкость.

Как видно из приведенных примеров, общая емкость конденсаторов, соединенных последовательно, всегда меньше наименьшей емкости, входящей в соединение.

Конденсаторы выбирают по емкости и рабочему напряжению которое подается на его пластины при включении в схему. При напряжении, превышающем допустимое, происходит пробой диэлектрика в конденсаторе. Это напряжение называется пробивным. Пробой диэлектрика сопровождается электрическим разрядом — искрой с характерным треском. Конденсатор с пробитым диэлектриком не пригоден для применения.

Каждый диэлектрик обладает определенной электрической прочностью, т. е. способностью противостоять пробою. Электрическая прочность (табл. 2) измеряется обычно в (в/см

) и определяется по формуле

где U — напряжение, в

d — толщина диэлектрика, см.

Многие, собирая тот или иной прибор, часто задумываются о том, как соединить конденсаторы параллельным или последовательным соединением. Далеко не каждый номинал выпускается промышленностью, поэтому задача обеспечить конструкцию связкой ёмкостей встречается тут и там. При параллельном включении номиналы складываются, а при последовательном используется более сложная формула. А ещё конденсаторы бывают подстроечными, такие совершенно точно включаются в цепи, где требуется обеспечить нужные резонансные характеристики. В этом случае также требуется решить указанную выше задачу. Проблема ещё в том, что часто сборка какого-нибудь индукционного нагревателя идёт буквально на коленках, железа целая кипа, колодок под рукой нет, а паять лень – что делать?

Видео:правильный подбор конденсаторов для электродвигателяСкачать

правильный подбор конденсаторов для электродвигателя

Сравнение различных вариантов

ЕмкостьНапряжение
ПараллельноеУвеличиваетсяНе изменяется
ПоследовательноеУменьшаетсяУвеличивается
СмешанноеИзменяетсяУвеличивается

Для выбора соединения можно воспользоваться такой таблицей. Слева тип соединения приборов, сверху свойства прибора для конденсации заряда.

Если требуется увеличить емкость, то нужно использовать параллельное соединение, а если увеличить напряжение — то последовательное. Если же требуется и то, и то, то нужно будет рассчитывать смешанное подключение конденсаторов в цепь.

Видео:Соединение конденсаторов - bezbotvyСкачать

Соединение конденсаторов - bezbotvy

Падение напряженности и общая емкость

Ёмкость конденсатора – это величина, определяющая количество заряда, который он способен в себе сохранить. Выражение имеет следующий вид:

Здесь q – заряд, накопленный между обкладками конденсатора, U – напряжение к ним приложенное.

Вышеописанная формула представляет общий случай. На практике при расчете ёмкости конденсатора следует учитывать ряд других переменных:

  • E0 – электрическая постоянная, равная 8,85*10-12 Ф/м,
  • E – диэлектрическая проницаемость среды, в которой располагаются обкладки конденсатора,
  • S – их площадь пересечения,
  • d – расстояние между обкладками.

Стандартная модель конденсатора имеет следующий вид.

Обкладки чаще всего изготовлены из тонкого листового алюминия и скручены в рулон. Делается это для увеличения их площади, ведь так ёмкость конденсатора становится существенно больше.

От выбора диэлектрика, устанавливаемого производителем между обкладками конденсатора, зависит номинальное и максимальное напряжение прибора. Это, в свою очередь, определяет его сферу применения. Если к обкладкам приложить чрезмерную разность потенциалов, то напряжённость поля между ними превысит допустимый уровень, и произойдёт пробой диэлектрика. Подобная ситуация особенно пагубно влияет на электролитические конденсаторы и ионисторы. В случае их пробоя прибор частично или полностью теряет способность накапливать заряд и в дальнейшем становится непригодным для работы.

При последовательном и параллельном включении разных конденсаторов существенно изменяются их характеристики. Данное свойство этих деталей активно используется инженерами-электронщиками и радиолюбителями. Знание принципов подключения позволяет им более продуктивно разрабатывать новые устройства.

Видео:Физика 10 класс (Урок№28 - Электрическая ёмкость. Конденсатор.)Скачать

Физика 10 класс (Урок№28 - Электрическая ёмкость. Конденсатор.)

Схемы соединения конденсаторов — расчет емкости

В данной статье приведены различные схемы соединения конденсаторов, а так же формулы их расчета с примером.

Последовательное соединение конденсаторов

Если условно разделить выводы каждого из конденсаторов на первый и второй выводы последовательное соединение конденсаторов будет выполняется следующим образом: второй вывод первого конденсатора соединяется с первым выводом второго конденсатора, второй вывод второго конденсатора, соединяется с первым выводом третьего и так далее. Таким образом мы получим группу (блок) последовательно соединенных конденсаторов с двумя свободными выводами — первым выводом первого конденсатора в блоке и вторым выводом последнего конденсатора, через которые данный конденсаторный блок и подключается в электрическую цепь.

Схема последовательного соединения конденсаторов будет иметь следующий вид:

Емкость конденсаторов соединенных треугольником

Фактически последовательное соединение конденсаторов имеет следующий вид:

Емкость конденсаторов соединенных треугольником

При данной схеме соединения заряды на конденсаторах будут одинаковы:

где: Q1, Q2, Q3 — соответственно заряд на первом, втором, третьем и т.д. конденсаторах

Напряжение на каждом конденсаторе при такой схеме зависит от его емкости:

  • U 1, U2, U3 — соответственно напряжение на первом, втором, третьем конденсаторах
  • C 1, C2, C3 — соответственно емкости первого, второго, третьего конденсаторов

При этом общее напряжение составит:

Рассчитать общую емкость конденсаторов при последовательном соединении можно по следующим формулам:

  • При последовательном соединении двух конденсаторов:
  • При последовательном соединении трех и более конденсаторов:

Параллельное соединение конденсаторов

Если условно разделить выводы каждого из конденсаторов на первый и второй выводы параллельное соединение конденсаторов будет выполняется следующим образом: первые выводы всех конденсаторов соединяются в одну общую точку (условно — точка №1) вторые выводы всех конденсаторов соединяются в другую общую точку (условно — точка №2). В результате получается группа (блок) параллельно соединенных конденсаторов подключение которой к электрической цепи производится через условные точки №1 и №2.

Схема параллельного соединения конденсаторов будет иметь следующий вид:

Емкость конденсаторов соединенных треугольником

Таким образом параллельное соединение конденсаторов будет иметь следующий вид:

Емкость конденсаторов соединенных треугольником

При данной схеме напряжение на всех конденсаторах будет одинаково:

Заряд же на каждом из конденсаторов будет зависеть от его емкости:

При этом общий заряд цепи будет равен сумме зарядов всех параллельно подключенных конденсаторов:

Рассчитать общую емкость конденсаторов при параллельном соединении можно по следующей формуле:

Смешанное соединение конденсаторов

Схема в которой присутствует две и более группы (блока) конденсаторов с различными схемами соединения называется схемой смешанного соединения конденсаторов.

Приведем пример такой схемы:

Емкость конденсаторов соединенных треугольником

Для расчетов такие схемы условно разделяются на группы одинаково соединенных конденсаторов, после чего расчеты ведутся для каждой группы по формулам приведенным выше.

Для наглядности приведем пример расчета общей емкости данной схемы.

Пример расчета

Условно разделив схему на группы получим следующее:

Емкость конденсаторов соединенных треугольником

Как видно из схемы на первом этапе мы выделили 3 группы (блока) конденсаторов, при этом конденсаторы в первой и второй группе соединены последовательно, а конденсаторы в третьей группе — параллельно.

Произведем расчет каждой группы:

  • Группа 1 — последовательное соединение трех конденсаторов:
  • Группа 2 — последовательное соединение двух конденсаторов:
  • Группа 3 — параллельное соединение трех конденсаторов:

В результате расчета схема упрощается:

Емкость конденсаторов соединенных треугольником

Как видно в упрощенной схеме осталась еще одна группа из двух параллельно соединенных конденсаторов, произведем расчет ее емкости:

  • Группа 4 — параллельное соединение двух групп конденсаторов:

С1,2,3,4,5 = C 1,2,3+ C4,5 = 2,72+12 = 14,72 мкФ

В конечном итоге получаем простую схему из двух последовательно соединенных групп конденсаторов:

Емкость конденсаторов соединенных треугольником

Теперь можно определить общую емкость схемы:

Собщ = ( C 1,2,3,4,5* C 6,7,8)/( C 1,2,3,4,5+ C 6,7,8) = 14,72*60/14,72+60 = 883,2/74,72 = 11,8 мкФ

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Поделиться или сохранить к себе: