Движение тела по вертикальной окружности

Вертикальное движение тел в физике — формулы и определение с примерами

Вертикальное движение тел:

Если держать в руках какой-либо предмет, а затем отпустить его, то предмет из-за притяжения Земли начнет двигаться прямо к ее поверхности. Такое движение тел называется вертикальное движение вниз. С этим движением вы ознакомились на уроках физики в 7 классе. В этой теме мы рассмотрим вертикальное движение вниз с точки зрения принципа независимости движений.

Когда тело двигается вертикально, на него действует одна или несколько сил (сила тяжести, сила сопротивления воздуха, сила Архимеда). В случае движения тел вверх (вертикально) в целях упрощения задачи мы не учитываем силу сопротивления воздуха и силу Архимеда.

Движение тела по вертикальной окружности

Понаблюдаем за движением какого-либо предмета, подбросив его вверх в вертикальном направлении (рис. 1.1.). Если бы тело двигалось вверх только со скоростью Движение тела по вертикальной окружности

Движение тела по вертикальной окружности

Движение тела, брошенного вертикально вверх, является равнозамедленным движением.

Скорость тела через время Движение тела по вертикальной окружностиопределяется с помощью выражения:

Движение тела по вертикальной окружности

Тело останавливается при достижении самой верхней точки Движение тела по вертикальной окружностии начинает вертикальное движение вниз.

Приравнивая левую сторону выражения (1.4) нулю, находим выражение для определения времени, необходимого для подъема тела:

Движение тела по вертикальной окружности

Максимальная высота подъема тела определяется выражением:

Движение тела по вертикальной окружности

В условиях, когда сопротивление воздуха ничтожно мало и можно его не учитывать, время подъема брошенного вверх тела будет равно времени падения вниз Движение тела по вертикальной окружности, т.е. с какой скоростью тело будет брошено вертикально вверх, то с такой же скоростью тело вернется вниз.

Тело, брошенное вертикально вниз, совершает равномерно ускоренное движение. Здесь скорость тела через время Движение тела по вертикальной окружностиопределяется выражением:

Движение тела по вертикальной окружности

Уравнение движения тела, брошенного вертикально вниз, запишем следующим образом:

Движение тела по вертикальной окружности

Первым закономерности вертикального движения тел экспериментальным способом начал изучать великий итальянский ученый Г. Галилей. На основе проведенных опытов были обнаружены две закономерности вертикального падения тел. Во-первых, вертикальное падение тела является прямолинейным равноускоренным движением, во-вторых, все тела при свободном падении двигаются с постоянным ускорением.

Если учесть, что свободное падение тел является равноускоренным движением, то все уравнения прямолинейного равноускоренного движения в этом случае также действительны, т.е. можно заменить ускорение Движение тела по вертикальной окружностина ускорение свободного падения Движение тела по вертикальной окружности, путь Движение тела по вертикальной окружностина высоту Движение тела по вертикальной окружности(табл. 1).

Из-за того, что свободное падение происходит равноускоренно, а движение вертикально вверх – равнозамедленно, среднюю скорость движения тела можно определить из следующего выражения:

Движение тела по вертикальной окружности

Образец решения задачи:

Начальная скорость предмета, падающего с крыши здания высотой
20 м, равна 15 м/сек. Чему равняется его скорость в момент столкновения
с землей?

Движение тела по вертикальной окружности

Движение тела по вертикальной окружности

Движение тела по вертикальной окружности

Движение тела по вертикальной окружности

Движение тела по вертикальной окружности

Решение:
Движение тела по вертикальной окружности
Ответ: Движение тела по вертикальной окружности

Уравнения равноускоренного
движения
Уравнения движения при
свободном падении
Движение тела по вертикальной окружностиДвижение тела по вертикальной окружности
Движение тела по вертикальной окружностиДвижение тела по вертикальной окружности
Движение тела по вертикальной окружностиДвижение тела по вертикальной окружности
Движение тела по вертикальной окружностиДвижение тела по вертикальной окружности
Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Неравномерное движение по окружности
  • Равномерное движение по окружности
  • Взаимная передача вращательного и поступательного движения
  • Движение горизонтально брошенного тела
  • Опыты Фарадея в физике
  • Электромагниты и их применение в физике
  • Колебательный контур в физике
  • Исследовательские методы в физике

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Движение тела, брошенного вертикально вверх. Невесомость | Физика 9 класс #14 | ИнфоурокСкачать

Движение тела, брошенного вертикально вверх. Невесомость | Физика 9 класс #14 | Инфоурок

Движение по окружности

Движение по окружности — простейший случай криволинейного движения тела. Когда тело движется вокруг некоторой точки, наряду с вектором перемещения удобно ввести угловое перемещение ∆ φ (угол поворота относительно центра окружности), измеряемое в радианах.

Зная угловое перемещение, можно вычислить длину дуги окружности (путь), которую прошло тело.

Если угол поворота мал, то ∆ l ≈ ∆ s .

Движение тела по вертикальной окружности

Видео:Физика - движение по окружностиСкачать

Физика - движение по окружности

Угловая скорость

При криволинейном движении вводится понятие угловой скорости ω , то есть скорости изменения угла поворота.

Определение. Угловая скорость

Угловая скорость в данной точке траектории — предел отношения углового перемещения ∆ φ к промежутку времени ∆ t , за которое оно произошло. ∆ t → 0 .

ω = ∆ φ ∆ t , ∆ t → 0 .

Единица измерения угловой скорости — радиан в секунду ( р а д с ).

Существует связь между угловой и линейной скоростями тела при движении по окружности. Формула для нахождения угловой скорости:

Видео:Теория движение тела брошенного вертикально вверхСкачать

Теория движение тела брошенного вертикально вверх

Нормальное ускорение

При равномерном движении по окружности, скорости v и ω остаются неизменными. Меняется только направление вектора линейной скорости.

При этом равномерное движение по окружности на тело действует центростремительное, или нормальное ускорение, направленное по радиусу окружности к ее центру.

a n = ∆ v → ∆ t , ∆ t → 0

Модуль центростремительного ускорения можно вычислить по формуле:

a n = v 2 R = ω 2 R

Докажем эти соотношения.

Рассмотрим, как изменяется вектор v → за малый промежуток времени ∆ t . ∆ v → = v B → — v A → .

В точках А и В вектор скорости направлен по касательной к окружности, при этом модули скоростей в обеих точках одинаковы.

По определению ускорения:

a → = ∆ v → ∆ t , ∆ t → 0

Взглянем на рисунок:

Движение тела по вертикальной окружности

Треугольники OAB и BCD подобны. Из этого следует, что O A A B = B C C D .

Если значение угла ∆ φ мало, расстояние A B = ∆ s ≈ v · ∆ t . Принимая во внимание, что O A = R и C D = ∆ v для рассмотренных выше подобных треугольников получим:

R v ∆ t = v ∆ v или ∆ v ∆ t = v 2 R

При ∆ φ → 0 , направление вектора ∆ v → = v B → — v A → приближается к направлению на центр окружности. Принимая, что ∆ t → 0 , получаем:

a → = a n → = ∆ v → ∆ t ; ∆ t → 0 ; a n → = v 2 R .

При равномерном движении по окружности модуль ускорения остается постоянным, а направление вектора изменяется со временем, сохраняя ориентацию на центр окружности. Именно поэтому это ускорение называется центростремительным: вектор в любой момент времени направлен к центру окружности.

Запись центростремительного ускорения в векторной форме выглядит следующим образом:

Здесь R → — радиус вектор точки на окружности с началом в ее центре.

Видео:Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорениеСкачать

Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорение

Тангенциальное ускорение

В общем случае ускорение при движении по окружности состоит из двух компонентов — нормальное, и тангенциальное.

Рассмотрим случай, когда тело движется по окружности неравномерно. Введем понятие тангенциального (касательного) ускорения. Его направление совпадает с направлением линейной скорости тела и в каждой точке окружности направлено по касательной к ней.

a τ = ∆ v τ ∆ t ; ∆ t → 0

Здесь ∆ v τ = v 2 — v 1 — изменение модуля скорости за промежуток ∆ t

Направление полного ускорения определяется векторной суммой нормального и тангенциального ускорений.

Движение тела по вертикальной окружности

Движение по окружности в плоскости можно описывать при помощи двух координат: x и y. В каждый момент времени скорость тела можно разложить на составляющие v x и v y .

Если движение равномерное, величины v x и v y а также соответствующие координаты будут изменяться во времени по гармоническому закону с периодом T = 2 π R v = 2 π ω

Видео:Урок 37. Движение тела, брошенного под углом к горизонту (начало)Скачать

Урок 37. Движение тела, брошенного под углом к горизонту (начало)

Асламазов Л.Г. Движение по окружности // Квант

Асламазов Л.Г. Движение по окружности // Квант. — 1972. — № 9. — С. 51-57.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

Для описания движения по окружности наряду с линейной скоростью вводят понятие угловой скорости. Если точка при движении по окружности за время Δt описывает дугу, угловая мера которой Δφ, то угловая скорость Движение тела по вертикальной окружности.

Угловая скорость ω связана с линейной скоростью υ соотношением υ = ω·r, где r — радиус окружности, по которой движется точка (рис. 1). Понятие угловой скорости особенно удобно для описания вращения твердого тела вокруг оси. Хотя линейные скорости у точек, находящихся на разном расстоянии от оси, будут неодинаковыми, их угловые скорости будут равны, и можно говорить об угловой скорости вращения тела в целом.

Движение тела по вертикальной окружности

Задача 1. Диск радиуса r катится без проскальзывания по горизонтальной плоскости. Скорость центра диска постоянная и равна υп. С какой угловой скоростью при этом вращается диск?

Каждая точка диска участвует в двух движениях — в поступательном движении со скоростью υп вместе с центром диска и во вращательном движении вокруг центра с некоторой угловой скоростью ω.

Для нахождения ω воспользуемся отсутствием проскальзывания, то есть тем, что в каждый момент времени скорость точки диска, соприкасающейся с плоскостью, равна нулю. Это означает, что для точки А (рис. 2) скорость поступательного движения υп равна по величине и противоположна по направлению линейной скорости вращательного движения υвр = ω·r. Отсюда сразу получаем Движение тела по вертикальной окружности.

Движение тела по вертикальной окружности

Задача 2. Найти скорости точек В, С и D того же диска (рис. 3).

Движение тела по вертикальной окружности

Рассмотрим вначале точку В. Линейная скорость ее вращательного движения направлена вертикально вверх и равна Движение тела по вертикальной окружности, то есть по величине равна скорости поступательного движения, которая, однако, направлена горизонтально. Складывая векторно эти две скорости, находим, что результирующая скорость υB по величине равна Движение тела по вертикальной окружностии образует угол 45º с горизонтом. У точки С скорости вращательного и поступательного движения направлены в одну сторону. Результирующая скорость υC равна 2υп и направлена горизонтально. Аналогично находится и скорость точки D (см. рис. 3).

Даже в том случае, когда скорость точки, движущейся по окружности, не меняется по величине, точка имеет некоторое ускорение, так как меняется направление вектора скорости. Это ускорение называется центростремительным. Оно направлено к центру окружности и равно Движение тела по вертикальной окружности(R — радиус окружности, ω и υ — угловая и линейная скорости точки).

Если же скорость точки, движущейся по окружности, меняется не только по направлению, но и по величине, то наряду с центростремительным ускорением существует и так называемое тангенциальное ускорение. Оно направлено по касательной к окружности и равно отношению Движение тела по вертикальной окружности(Δυ — изменение величины скорости за время Δt).

Задача 3. Найти ускорения точек А, В, С и D диска радиуса r, катящегося без проскальзывания по горизонтальной плоскости. Скорость центра диска постоянна и равна υп (рис. 3).

В системе координат, связанной с центром диска, диск вращается с угловой скоростью ω, а плоскость движется поступательно со скоростью υп. Проскальзывание между диском и плоскостью отсутствует, следовательно, Движение тела по вертикальной окружности. Скорость поступательного движения υп не меняется, поэтому угловая скорость вращения диска постоянная и точки диска имеют только центростремительное ускорение Движение тела по вертикальной окружности, направленное к центру диска. Так как система координат движется без ускорения (с постоянной скоростью υп), то в неподвижной системе координат ускорения точек диска будут теми же.

Перейдем теперь к задачам на динамику вращательного движения. Вначале рассмотрим простейший случай, когда движение по окружности происходит с постоянной скоростью. Так как ускорение тела при этом направлено к центру, то и векторная сумма всех сил, приложенных к телу, должна быть тоже направлена к центру, и по II закону Ньютона Движение тела по вертикальной окружности.

Следует помнить, что в правую часть этого уравнения входят только реальные силы, действующие на данное тело со стороны других тел. Никакой центростремительной силы при движении по окружности не возникает. Этим термином пользуются просто для обозначения равнодействующей сил, приложенных к телу, движущемуся по окружности. Что касается центробежной силы, то она возникает только при описании движения по окружности в неинерциальной (вращающейся) системе координат. Мы пользоваться здесь понятием центростремительной и центробежной силы вообще не будем.

Задача 4. Определить наименьший радиус закругления дороги, которое автомобиль может пройти при скорости υ = 70 км/ч и коэффициенте трения шин о дорогу k =0,3.

На автомобиль действуют сила тяжести Р = m·g, сила реакции дороги N и сила трения Fтp между шинами автомобиля и дорогой. Силы Р и N направлены вертикально и равны по величине: P = N. Сила трения, препятствующая проскальзыванию («заносу») автомобиля, направлена к центру поворота и сообщает центростремительное ускорение: Движение тела по вертикальной окружности. Максимальное значение силы трения Fтр max = k·N = k·m·g, поэтому минимальное значение радиуса окружности, по которой еще возможно движение со скоростью υ, определяется из уравнения Движение тела по вертикальной окружности. Отсюда Движение тела по вертикальной окружности(м).

Сила реакции дороги N при движении автомобиля по окружности не проходит через центр тяжести автомобиля. Это связано с тем, что ее момент относительно центра тяжести должен компенсировать момент силы трения, стремящийся опрокинуть автомобиль. Величина силы трения тем больше, чем больше скорость автомобиля Движение тела по вертикальной окружности. При некотором значении скорости момент силы трения превысит момент силы реакции и автомобиль опрокинется.

Задача 5. При какой скорости автомобиль, движущийся по дуге окружности радиуса R = 130 м, может опрокинуться? Центр тяжести автомобиля находится на высоте h = 1 м над дорогой, ширина следа автомобиля l = 1,5 м (рис. 4).

Движение тела по вертикальной окружности

В момент опрокидывания автомобиля как сила реакции дороги N, так и сила трения Fтp приложены к «внешнему» колесу. При движении автомобиля по окружности со скоростью υ на него действует сила трения Движение тела по вертикальной окружности. Эта сила создает момент относительно центра тяжести автомобиля Движение тела по вертикальной окружности. Максимальный момент силы реакции дороги N = m·g относительно центра тяжести равен Движение тела по вертикальной окружности(в момент опрокидывания сила реакции проходит через внешнее колесо). Приравнивая эти моменты, найдем уравнение для максимальной скорости, при которой автомобиль еще не опрокинется:

Движение тела по вертикальной окружности

Откуда Движение тела по вертикальной окружности≈ 30 м/с ≈ 110 км/ч.

Чтобы автомобиль мог двигаться с такой скоростью, необходим коэффициент трения Движение тела по вертикальной окружности(см. предыдущую задачу).

Аналогичная ситуация возникает при повороте мотоцикла или велосипеда. Сила трения, создающая центростремительное ускорение, имеет момент относительно центра тяжести, стремящийся опрокинуть мотоцикл. Поэтому для компенсации этого момента моментом силы реакции дороги мотоциклист наклоняется в сторону поворота (рис. 5).

Задача 6. Мотоциклист едет по горизонтальной дороге со скоростью υ = 70 км/ч, делая поворот радиусом R = 100 м. На какой угол α к горизонту он должен при этом наклониться, чтобы не упасть?

Сила трения между мотоциклом и дорогой Движение тела по вертикальной окружности, так как она сообщает мотоциклисту центростремительное ускорение. Сила реакции дороги N = m·g. Условие равенства моментов силы трения и силы реакции относительно центра тяжести дает уравнение: Fтp·l·sin α = N·l·cos α, где l — расстояние ОА от центра тяжести до следа мотоцикла (см. рис. 5).

Движение тела по вертикальной окружности

Подставляя сюда значения Fтp и N, находим что Движение тела по вертикальной окружностиили Движение тела по вертикальной окружности. Отметим, что равнодействующая сил N и Fтp при этом угле наклона мотоцикла проходит через центр тяжести, что и обеспечивает равенство нулю суммарного момента сил N и Fтp.

Для того, чтобы увеличить скорость движения по закруглению дороги, участок дороги на повороте делают наклонным. При этом в создании центростремительного ускорения, кроме силы трения, участвует и сила реакции дороги.

Задача 7. С какой максимальной скоростью υ может двигаться автомобиль по наклонному треку с углом наклона α при радиусе закругления R и коэффициенте трения шин о дорогу k?

На автомобиль действуют сила тяжести m·g, сила реакции N, направленная перпендикулярно плоскости трека, и сила трения Fтp, направленная вдоль трека (рис. 6).

Движение тела по вертикальной окружности

Так как нас не интересуют в данном случае моменты сил, действующих на автомобиль, мы нарисовали все силы приложенными к центру тяжести автомобиля. Векторная сумма всех сил должна быть направлена к центру окружности, по которой движется автомобиль, и сообщать ему центростремительное ускорение. Поэтому сумма проекций сил на направление к центру (горизонтальное направление) равна Движение тела по вертикальной окружности, то есть

Движение тела по вертикальной окружности

Сумма проекций всех сил на вертикальное направление равна нулю:

Подставляя в эти уравнения максимальное возможное значение силы трения Fтp = k·N и исключая силу N, находим максимальную скорость Движение тела по вертикальной окружности, с которой еще возможно движение по такому треку. Это выражение всегда больше значения Движение тела по вертикальной окружности, соответствующего горизонтальной дороге.

Разобравшись с динамикой поворота, перейдем к задачам на вращательное движение в вертикальной плоскости.

Задача 8. Автомобиль массы m = 1,5 т движется со скоростью υ = 70 км/ч по дороге, показанной на рисунке 7. Участки дороги АВ и ВС можно считать дугами окружностей радиуса R = 200 м, касающимися друг друга в точке В. Определить силу давления автомобиля на дорогу в точках А и С. Как меняется сила давления при прохождении автомобилем точки В?

Движение тела по вертикальной окружности

В точке А на автомобиль действуют сила тяжести Р = m·g и сила реакции дороги NA. Векторная сумма этих сил должна быть направлена к центру окружности, то есть вертикально вниз, и создавать центростремительное ускорение: Движение тела по вертикальной окружности, откуда Движение тела по вертикальной окружности(Н). Сила давления автомобиля на дорогу равна по величине и противоположна по направлению силе реакции. В точке С векторная сумма сил направлена вертикально вверх: Движение тела по вертикальной окружностии Движение тела по вертикальной окружности(Н). Таким образом, в точке А сила давления меньше силы тяжести, а в точке С — больше.

В точке В автомобиль переходит с выпуклого участка дороги на вогнутый (или наоборот). При движении по выпуклому участку проекция силы тяжести на направление к центру должна превышать силу реакции дороги NB1, причем Движение тела по вертикальной окружности. При движении по вогнутому участку дороги, наоборот, сила реакции дороги NВ2 превосходит проекцию силы тяжести: Движение тела по вертикальной окружности.

Из этих уравнений получаем, что при прохождении точки В сила давления автомобиля на дорогу меняется скачком на величину Движение тела по вертикальной окружности≈ 6·10 3 Н. Разумеется, такие ударные нагрузки действуют разрушающе как на автомобиль, так и на дорогу. Поэтому дороги и мосты всегда стараются делать так, чтобы их кривизна менялась плавно.

При движении автомобиля по окружности с постоянной скоростью сумма проекций всех сил на направление, касательное к окружности, должна быть равна нулю. В нашем случае касательная составляющая силы тяжести уравновешивается силой трения между колесами автомобиля и дорогой.

Величина силы трения регулируется вращательным моментом, прикладываемым к колесам со стороны мотора. Этот момент стремится вызвать проскальзывание колес относительно дороги. Поэтому возникает сила трения, препятствующая проскальзыванию и пропорциональная приложенному моменту. Максимальное значение силы трения равно k·N, где k — коэффициент трения между шинами автомобиля и дорогой, N — сила давления на дорогу. При движении автомобиля вниз сила трения играет роль тормозящей силы, а при движении вверх, наоборот, роль силы тяги.

Задача 9. Автомобиль массой m = 0,5 т, движущийся со скоростью υ = 200 км/ч, совершает «мертвую петлю» радиуса R = 100 м (рис. 8). Определить силу давления автомобиля на дорогу в верхней точке петли А; в точке В, радиус-вектор которой составляет угол α = 30º с вертикалью; в точке С, в которой скорость автомобиля направлена вертикально. Возможно ли движение автомобиля по петле с такой постоянной скоростью при коэффициенте трения шин о дорогу k = 0,5?

Движение тела по вертикальной окружности

В верхней точке петли сила тяжести и сила реакции дороги NA направлены вертикально вниз. Сумма этих сил создает центростремительное ускорение: Движение тела по вертикальной окружности. Поэтому Движение тела по вертикальной окружностиН.

Сила давления автомобиля на дорогу равна по величине и противоположна по направлению силе NА.

В точке В центростремительное ускорение создается суммой силы реакции и проекции силы тяжести на направление к центру: Движение тела по вертикальной окружности. Отсюда Движение тела по вертикальной окружностиН.

Легко видеть, что NB > NA; с увеличением угла α сила реакции дороги увеличивается.

В точке С сила реакции Движение тела по вертикальной окружностиН; центростремительное ускорение в этой точке создается только силой реакции, а сила тяжести направлена по касательной. При движении по нижней части петли сила реакции будет превышать Движение тела по вертикальной окружностии максимальное значение Движение тела по вертикальной окружностиН сила реакции имеет в точке D. Значение Движение тела по вертикальной окружности, таким образом, является минимальным значением силы реакции.

Скорость автомобиля будет постоянной, если касательная составляющая силы тяжести не превышает максимальной силы трения k·N во всех точках петли. Это условие заведомо выполняется, если минимальное значение Движение тела по вертикальной окружностипревосходит максимальное значение касательной составляющей силы веса. В нашем случае это максимальное значение равно m·g (оно достигается в точке С), и условие Движение тела по вертикальной окружностивыполняется при k = 0,5, υ = 200 км/ч, R = 100 м.

Таким образом, в нашем случае движение автомобиля по «мертвой петле» с постоянной скоростью возможно.

Рассмотрим теперь движение автомобиля по «мертвой петле» с выключенным мотором. Как уже отмечалось, обычно момент силы трения противодействует моменту, приложенному к колесам со стороны мотора. При движении автомобиля с выключенным мотором этого момента нет, и силой трения между колесами автомобиля и дорогой можно пренебречь.

Скорость автомобиля уже не будет постоянной — касательная составляющая силы тяжести замедляет или ускоряет движение автомобиля по «мертвой петле». Центростремительное ускорение тоже будет меняться. Создается оно, как обычно, равнодействующей силы реакции дороги и проекции силы тяжести на направление к центру петли.

Задача 10. Какую наименьшую скорость должен иметь автомобиль в нижней точке петли D (см. рис. 8) для того, чтобы совершить ее с выключенным мотором? Чему будет равна при этом сила давления автомобиля на дорогу в точке В? Радиус петли R = 100 м, масса автомобиля m = 0,5 т.

Посмотрим, какую минимальную скорость может иметь автомобиль в верхней точке петли А, чтобы продолжать двигаться по окружности?

Центростремительное ускорение в этой точке дороги создается суммой силы тяжести и силы реакции дороги Движение тела по вертикальной окружности. Чем меньшую скорость имеет автомобиль, тем меньшая возникает сила реакции NA. При значении Движение тела по вертикальной окружностиэта сила обращается в нуль. При меньшей скорости сила тяжести превысит значение, необходимое для создания центростремительного ускорения, и автомобиль оторвется от дороги. При скорости Движение тела по вертикальной окружностисила реакции дороги обращается в нуль только в верхней точке петли. В самом деле, скорость автомобиля на других участках петли будет большей, и как легко видеть из решения предыдущей задачи, сила реакции дороги тоже будет большей, чем в точке А. Поэтому, если автомобиль в верхней точке петли имеет скорость Движение тела по вертикальной окружности, то он нигде не оторвется от петли.

Теперь определим, какую скорость должен иметь автомобиль в нижней точке петли D, чтобы в верхней точке петли А его скорость Движение тела по вертикальной окружности. Для нахождения скорости υD можно воспользоваться законом сохранения энергии, как если бы автомобиль двигался только под действием силы тяжести. Дело в том, что сила реакции дороги в каждый момент направлена перпендикулярно перемещению автомобиля, а, следовательно, ее работа равна нулю (напомним, что работа ΔA = F·Δs·cos α, где α — угол между силой F и направлением перемещения Δs). Силой трения между колесами автомобиля и дорогой при движении с выключенным мотором можно пренебречь. Поэтому сумма потенциальной и кинетической энергии автомобиля при движении с выключенным мотором не меняется.

Приравняем значения энергии автомобиля в точках А и D. При этом будем отсчитывать высоту от уровня точки D, то есть потенциальную энергию автомобиля в этой точке будем считать равной нулю. Тогда получаем

Движение тела по вертикальной окружности

Подставляя сюда значение Движение тела по вертикальной окружностидля искомой скорости υD, находим: Движение тела по вертикальной окружности≈ 70 м/с ≈ 260 км/ч.

Если автомобиль въедет в петлю с такой скоростью, то он сможет совершить ее с выключенным мотором.

Определим теперь, с какой силой при этом автомобиль будет давить на дорогу в точке В. Скорость автомобиля в точке В опять легко находится из закона сохранения энергии:

Движение тела по вертикальной окружности

Подставляя сюда значение Движение тела по вертикальной окружности, находим, что скорость Движение тела по вертикальной окружности.

Воспользовавшись решением предыдущей задачи, по заданной скорости находим силу давления в точке B:

Движение тела по вертикальной окружностиН.

Аналогично можно найти силу давления в любой другой точке «мертвой петли».

1. Найти угловую скорость искусственного спутника Земли, вращающегося по круговой орбите с периодом обращения Т = 88 мин. Найти линейную скорость движения этого спутника, если известно, что его орбита расположена на расстоянии R = 200 км от поверхности Земли.

2. Диск радиуса R помещен между двумя параллельными рейками. Рейки движутся со скоростями υ1 и υ2. Определить угловую скорость вращения диска и скорость его центра. Проскальзывание отсутствует.

3. Диск катится по горизонтальной поверхности без проскальзывания. Показать, что концы векторов скоростей точек вертикального диаметра находятся на одной прямой.

4. Самолет движется по окружности с постоянной горизонтальной скоростью υ = 700 км/час. Определить радиус R этой окружности, если корпус самолета наклонен на угол α = 5°.

5. Груз массы m = 100 г, подвешенный на нити длины l = 1 м, равномерно вращается по кругу в горизонтальной плоскости. Найти период обращения груза, если при его вращении нить отклонена по вертикали на угол α = 30°. Определить также натяжение нити.

6. Автомобиль движется со скоростью υ = 80 км/ч по внутренней поверхности вертикального цилиндра радиуса R = 10 м по горизонтальному кругу. При каком минимальном коэффициенте трения между шинами автомобиля и поверхностью цилиндра это возможно?

7. Груз массой m подвешен на нерастяжимой нити, максимально возможное натяжение которой равно 1,5m·g. На какой максимальный угол α можно отклонить нить от вертикали, чтобы при дальнейшем движении груза нить не оборвалась? Чему будет равно при этом натяжение нити в тот момент, когда нить составит угол α/2 с вертикалью?

I. Угловая скорость искусственного спутника Земли Движение тела по вертикальной окружности≈ 0,071 рад/с. Линейная скорость спутника υ = ω·R. где R — радиус орбиты. Подставляя сюда R = R3 + h, где R3 ≈ 6400 км, находим υ ≈ 467 км/с.

2. Здесь возможны два случая (рис. 1). Если угловая скорость диска ω, а скорость его центра υ, то скорости точек, соприкасающихся с рейками, будут соответственно равны

(Мы приняли для определенности, что υ1 > υ2). Решая эти системы, находим:

а)Движение тела по вертикальной окружности

б) Движение тела по вертикальной окружности

Движение тела по вертикальной окружности

3. Скорость любой точки М, лежащей на отрезке ОВ (см. рис. 2), находится по формуле υM = υ + ω·rM, где rM — расстояние от точки М до центра диска О. Для любой точки N, принадлежащей отрезку ОА, имеем: υN = υ – ω·rN, где rN — расстояние от точки N до центра. Обозначим через ρ расстояние от любой точки диаметра ВА до точки А соприкосновения диска с плоскостью. Тогда очевидно, что rM = ρ – R и rN = R – ρ = –(ρ – R). где R — радиус диска. Поэтому скорость любой точки на диаметре ВА находится по формуле: υρ = υ + ω·(ρ – R). Так как диск катится без проскальзывания, то Движение тела по вертикальной окружностии для скорости υρ получаем υρ = ω·ρ. Отсюда следует, что концы векторов скоростей находятся на прямой, выходящей из точки А и наклоненной к диаметру ВА под углом, пропорциональным угловой скорости вращения диска ω.

Движение тела по вертикальной окружности

Доказанное утверждение позволяет нам сделать вывод, что сложное движение точек, находящихся на диаметре ВА, можно в каждый данный момент рассматривать как простое вращение вокруг неподвижной точки А с угловой скоростью ω, равной угловой скорости вращения вокруг центра диска. В самом деле, в каждый момент скорости этих точек направлены перпендикулярно диаметру ВА, а по величине равны произведению ω на расстояние до точки А.

Оказывается, что это утверждение справедливо для любой точки диска. Более того, оно является общим правилом. При любом движении твердого тела в каждый момент существует ось, вокруг которой тело просто вращается — мгновенная ось вращения.

4. На самолет действуют (см. рис. 3) сила тяжести Р = m·g и подъемная сила N, направленная перпендикулярно плоскости крыльев (так как самолет движется с постоянной скоростью, то сила тяги и сила лобового сопротивления воздуха уравновешивают друг друга). Равнодействующая сил Р и N должна быть направлена к центру окружности, по которой движется самолет, и создавать центростремительное ускорение Движение тела по вертикальной окружности. Из рисунка находим:

Движение тела по вертикальной окружностиили Движение тела по вертикальной окружностикм.

Движение тела по вертикальной окружности

5. Равнодействующая силы тяжести Р = m·g и силы натяжения нити Т должна создавать центростремительное ускорение ац = ω 2 ·R, где R = l·sin α — радиус круга, по которому вращается груз. Из рисунка 4 получаем:

m·ω 2 ·R = tg α, откуда Движение тела по вертикальной окружности

Период обращения груза Движение тела по вертикальной окружности

Натяжение нити Движение тела по вертикальной окружности

Движение тела по вертикальной окружности

6. На автомобиль действуют (рис. 5) сила тяжести Р = m·g, сила реакции со стороны цилиндра N и сила трения Fтp. Так как автомобиль движется по горизонтальному кругу, то силы Р и Fтp уравновешивают друг друга, а сила N создает центростремительное ускорение Движение тела по вертикальной окружности. Максимальное значение силы трения связано с силой реакции N соотношением: Fтp = k·N. В результате получаем систему уравнений: Движение тела по вертикальной окружности, из которой находится минимальное значение коэффициента трения Движение тела по вертикальной окружности

Движение тела по вертикальной окружности

7. Груз будет двигаться по окружности радиуса l (рис. 6). Центростремительное ускорение груза Движение тела по вертикальной окружности(υ — скорость груза) создается разностью величин силы натяжения нити Т и проекции силы тяжести m·g направление нити: Движение тела по вертикальной окружности. Поэтому Движение тела по вертикальной окружности, где β — угол, образуемый нитью с вертикалью. По мере того, как груз будет опускаться, его скорость будет расти, а угол β будет уменьшаться. Натяжение нити станет максимальным при угле β = 0 (в тот момент, когда нить будет вертикальной): Движение тела по вертикальной окружности. Максимальная скорость груза υ0 находится по углу α, на который отклоняют нить, из закона сохранения энергии:

Движение тела по вертикальной окружности

Используя это соотношение, для максимального значения натяжения нити получаем формулу: Tmax = m·g·(3 – 2 cos α). По условию задачи Tmах = 2m·g. Приравнивая эти выражения, находим cos α = 0,5 и, следовательно, α = 60°.

Определим теперь натяжение нити при Движение тела по вертикальной окружности. Скорость груза в этот момент также находится из закона сохранения энергии:

Движение тела по вертикальной окружности

Подставляя значение υ1 в формулу для силы натяжения, находим:

💡 Видео

Движение тел по окружностиСкачать

Движение тел по окружности

Физика 9 класс (Урок№4 - Движение тела по окружности. Период и частота)Скачать

Физика 9 класс (Урок№4 - Движение тела по окружности. Период и частота)

Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | ИнфоурокСкачать

Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | Инфоурок

Физика 9 класс (Урок№1 - Движение тела, брошенного вертикально вверх)Скачать

Физика 9 класс (Урок№1 - Движение тела, брошенного вертикально вверх)

Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.Скачать

Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.

Движение тела, брошенного под углом к горизонтуСкачать

Движение тела, брошенного под углом к горизонту

Урок 90. Движение по окружности (ч.2)Скачать

Урок 90. Движение по окружности (ч.2)

Урок 89. Движение по окружности (ч.1)Скачать

Урок 89. Движение по окружности (ч.1)

9 класс, 10 урок, Движение тела, брошенного вертикально вверхСкачать

9 класс, 10 урок, Движение тела, брошенного вертикально вверх

Движение тела, брошенного вертикально вверхСкачать

Движение тела, брошенного вертикально вверх

Урок 34. Свободное падение. Ускорение свободного паденияСкачать

Урок 34. Свободное падение. Ускорение свободного падения

7.3. Движение тела, брошенного вертикально вверх и внизСкачать

7.3. Движение тела, брошенного вертикально вверх и вниз

Лекция 4.4 | Движение тела, брошенного вертикально вверх | Александр Чирцов | ЛекториумСкачать

Лекция 4.4 | Движение тела, брошенного вертикально вверх | Александр Чирцов | Лекториум

Движение тела под действием силы тяжести. 1 часть. 9 класс.Скачать

Движение тела под действием силы тяжести. 1 часть. 9 класс.

Физика - движение тела, брошенного под углом к горизонтуСкачать

Физика - движение тела, брошенного под углом к горизонту
Поделиться или сохранить к себе: