Две окружности пересекаются в точках p и q прямая

Две окружности пересекаются в точках p и q прямая

Две окружности пересекаются в точках P и Q. Прямая, проходящая через точку P, второй раз пересекает первую окружность в точке A, а вторую — в точке D. Прямая, проходящая через точку Q параллельно AD, второй раз пересекает первую окружность в точке B, а вторую — в точке C.

а) Докажите, что четырёхугольник ABCD — параллелограмм.

б) Найдите отношение CP : PB, если радиус первой окружности втрое больше радиуса второй.

а) Обозначим ∠BAD = ∠PAB = α. Поскольку ABQP и CDPQ — вписанные четырёхугольники:

Две окружности пересекаются в точках p и q прямая

Две окружности пересекаются в точках p и q прямая

Две окружности пересекаются в точках p и q прямая

Значит, ∠BAD + ∠ADC = 180°, и поэтому AB || CD. Противоположные стороны четырёхугольника ABCD попарно параллельны, следовательно, это параллелограмм.

б) Пусть R — радиус второй (меньшей) окружности. Тогда радиус большей окружности равен 3R. По теореме синусов:

Две окружности пересекаются в точках p и q прямая

Две окружности пересекаются в точках p и q прямая

Две окружности пересекаются в точках p и q прямая

Видео:Две окружности пересекаются, если радиус одной ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Две окружности пересекаются, если радиус одной ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Ответ : CP : PB = 1 : 3.

Критерии оценивания выполнения заданияБаллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)3
Получен обоснованный ответ в пункте б)

имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки

2
Имеется верное доказательство утверждения пункта а)

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

Решение задач по геометрии ЕГЭ №16

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Развитие управляющих функций мозга ребёнка: полезные советы и упражнения для педагогов

Сертификат и скидка на обучение каждому участнику

ЕГЭ 2017 Вариант №4 (№16)

Видео:Геометрия Две окружности пересекаются в точках P и Q. Прямая, проходящая через точку P, второйСкачать

Геометрия Две окружности пересекаются в точках P и Q. Прямая, проходящая через точку P, второй

Две окружности пересекаются в точках P и Q . Прямая, проходящая через точку P , второй раз пересекает первую окружность в точке A , а вторую – в точке D . Прямая, проходящая через точку Q параллельно AD , второй раз пересекает первую окружность в точке B , а вторую – в точке C .

А) Докажите, что четырёхугольник ABCD – параллелограмм.

Б) Найдите отношение BP : PC , если радиус первой окружности вдвое больше радиуса второй.

Две окружности пересекаются в точках p и q прямая

1.Четырёхугольники ABQP и PDCQ – трапеции (т.к прямые AD ∥ BC по условию). Учитывая, что четырёхугольники вписаны в окружности, следует что они являются равнобедренными т.е. AB = QP и PQ = DC AB = DC .

2.У равнобедреннытрапеций углы при основаниях равны: ∠ BAC + ∠ APQ , ∠ PQC = ∠ QCD , а ∠ APQ = ∠ PQC как накрест лежащие при параллельных прямых AD и BC и секущей PQ , то ∠ BAP = ∠ QCD (по закону транзитивности) зничит ∠ BAP + ∠ ABQ = ∠ QCD + ∠ ABQ = 180 0 . Если сумма односторонних углов при прямых AB и DC и секущей BC равна 180 0 то ( по признаку параллельности прямых) AB ∥ DC . По определению, четырёхугольник у которого противолещащие стороны лежат на параллельных прямых называется параллелограммом. Значит ABCD – параллелограмм, что требовалось доказать.

б) Окружности описанные около четырёхугольников ABQP и PDCQ , можно рассмотреть, как окружности описанные около треугольников ∆ BQP и ∆ PCQ .

Пусть ∠ BQP =, тогда ∠ PQC = 180 0 — . По формулам приведения sin (180 0 — sin

Так как для любого треугольника отношение стороны треугольника к синусу противолежащего угла равно диаметру описанной окружности (следствие из теоремы синусов), то : = (2 R 1 ) : (2 R 2 ) , т.е. = = т.к. по условию радиус первой окружности в два раза больше радиуса второй.

Видео:Две окружности/ Повторяем углыСкачать

Две окружности/ Повторяем углы

ЕГЭ 2017 Вариант №5 (№16)

На сторонах AC и BC треугольника ABC вне треугольника построены квадраты ACDE BFKC . Точка M – середина стороны .

а)Докажите, что CM = DK

б)Найдите расстояние от точки M до центров квадратов, если AC = 6, BC = 10 и ∠ ACB = 30 0 .

Две окружности пересекаются в точках p и q прямая

1.Проведу луч CM , и на его продолженииотложу отрезок MC 1 = CM . Четырёхугольник AC 1 BC параллелограммм (т.к. диагонали точкой пересечения делятся пополам: медиана по условию)

2. BC = b , AC = a , ∠ ABC = ∠ C 1 BP = ( ∠ ABC = ∠ C 1 BP соответственные углы при параллельных прямых BC 1 и AC и секущей BC )

∠ С 1 BC = 360 0 — 180 0 — = 180 0 —

∠ KCD = 360 0 — 90 0 — — 90 0 = 180 0 — , т.е.

Видео:Геометрия Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этихСкачать

Геометрия Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этих

∠ С 1 BC = ∠ RCD , BC 1 = AC = a = CD , BC = CK = b треугольники ∆ С 1 BC и ∆ KCD равны по второму признаку равенства треугольников KD = C 1 C , MC = CC 1 = KD что и требовалось доказать.

б) 1.Рассмотрю треугольник ∆ ABC . По теореме косинусов AB 2 = AC 2 + BC 2 — 2 AC * BC cos 30 0 ,

AB 2 = 36+100 – 2*6*10 * = 136 — 60, AB =.

2. Рассмотрю ∆ MBO 1 : BO 1 = BK = , MB= cos ∠ O 2 AM = cos( ∠ MAC +45 0 ) =cos45 0 cos ∠ MB -sin 45 0 sin ∠ MBC= (cos ∠ MBC — из ∆ MBC cos ∠ MBC= = = =

sin ∠ MBC =, т . к . . MC=

3. Рассмотрю ∆ MAO 2 : AO 2 = AD = , MA

cos ∠ O 2 AM= cos( ∠ MAC +45 0 ) =cos45 0 cos ∠ MAC -sin 45 0 sin ∠ MAC= (cos ∠ MAC — из ∆ MAC cos ∠ MAC= = = =

ЕГЭ Ларин. Вариант №101 №16

Видео:10.16.1. Планиметрия. Гордин Р.К.Скачать

10.16.1. Планиметрия. Гордин Р.К.

В остроугольном треугольнике АВС высоты АА 1 и СС 1 пересекаются в точке О.

А) Докажите, что треугольники АОС и С 1 ОА 1 подобны.

Б) Найдите площадь четырехугольника АСА 1 С 1 , если известно, что угол АВС равен 30 о , а площадь треугольника АВС равна 80.

Две окружности пересекаются в точках p и q прямая

1. Рассмотрю ∆ COA 1 и ∆ AOC 1 . Эти треугольники подобны по первому признаку подобия треугольников (по углам), так как ∠ COA 1 = ∠ AOC 1 — как вертикальные, ∠ OA 1 C = ∠ OC 1 A = 90 0 . Из подобия треугольников ( по определению подобия треугольников) пропорциональность соответствующих сторон: = =.

По свойству пропорции из равенства = ⟹ = ( если поменять в верной пропорции крайние)

2. Т.к. = и ∠ AOC = ∠ A 1 OC 1 то треугольники АОС и С 1 ОА 1 подобны по второму признаку подобия треугольников (по пропорциональности двух сторон и равенству углов между этими сторонами). Ч.т.д.

б) По условию задачи S ABC = 80. S ABC = AB * CC 1 = BC * AA 1 = AB * BC * sin 30 0 .

Из ∆ AA 1 B AA 1 = AB , из ∆ CC 1 B CC 1 BC — катеты прямоугольных треугольников лежащих напротив угла в 30 0 ,

Видео:Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |Скачать

Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |

из ∆ AA 1 B BA 1 = BA*cos 30 0 = BA

из ∆ CC 1 B BC 1 = BC*cos 30 0 = ⟹ S ∆A1BC1 = A 1 B*BC 1 *sin 30 0 =

🔍 Видео

Две окружности пересекаются в точках A и B Через точку A проведены диаметры AC и AD этих окружностеСкачать

Две окружности пересекаются в точках A и B  Через точку A проведены диаметры AC и AD этих окружносте

Задача. Две окружности касаются внутренним образом.Скачать

Задача. Две окружности касаются внутренним образом.

№662 (исправлено) Хорды АВ и CD окружности пересекаются в точке Е. Найдите угол ВЕС, если ∪AD=54°Скачать

№662 (исправлено) Хорды АВ и CD окружности пересекаются в точке Е. Найдите угол ВЕС, если ∪AD=54°

Задачи региона ВсОШ на степень точкиСкачать

Задачи региона ВсОШ на степень точки

Поступайте правильно Математика ЕГЭСкачать

Поступайте правильно Математика ЕГЭ

№662. Хорды АВ и CD окружности пересекаются в точке Е. Найдите угол ВЕС, если ∪AD=54°, ∪BC= 70°.Скачать

№662. Хорды АВ и CD окружности пересекаются в точке Е. Найдите угол ВЕС, если ∪AD=54°, ∪BC= 70°.

Хорды AC и BD окружности пересекаются в точке P, BP=6, CP=8, DP=12. Найдите AP.Скачать

Хорды AC и BD окружности пересекаются в точке P, BP=6, CP=8, DP=12. Найдите AP.

Геометрия Две окружности касаются внутренним образом в точке A, причем меньшая окружность проходитСкачать

Геометрия Две окружности касаются внутренним образом в точке A, причем меньшая окружность проходит

Урок 5. №24 ОГЭ. Две окружности и подобие.Скачать

Урок 5. №24 ОГЭ.  Две окружности и подобие.

Задача №16. Пересекающиеся и касающиеся окружности.Скачать

Задача №16. Пересекающиеся и касающиеся окружности.

ЕГЭ задание 16 Внутреннее касание двух окружностейСкачать

ЕГЭ задание 16 Внутреннее касание двух окружностей

Касательные к окружности пересекаются в точке. Теорема и решение задач. Геометрия 7-8 классСкачать

Касательные к окружности пересекаются в точке. Теорема и решение задач. Геометрия 7-8 класс

Задача по геометрии.Скачать

Задача по геометрии.

Прямоугольник и окружностьСкачать

Прямоугольник и окружность
Поделиться или сохранить к себе: