Рассмотрим, какими свойствами обладают отрезки касательных к окружности, проведенные из одной точки.
(Свойство касательных, проведенных из одной точки)
Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
AB=AC 
Дано: окружность (O;R),
AB и AC — касательные к окружности (O;R),
B, C — точки касания.
Доказать: AB=AC, ∠BAO=∠CAO.
Следовательно, треугольники ABO и ACO — прямоугольные. У них
1) катеты OB=OC (как радиусы)
2) гипотенуза OA — общая сторона.
Из равенства треугольников следует равенство соответствующих сторон:
- № 16*. 1) Из одной точки проведены две касательные к окружности. Докажите, что отрезки касательных МР и MQ равны. 2) Докажите, что через одну точку не может проходить больше двух касательных к окружности.
- Отрезки и прямые, связанные с окружностью. Теорема о бабочке
- Отрезки и прямые, связанные с окружностью
- Свойства хорд и дуг окружности
- Теоремы о длинах хорд, касательных и секущих
- Доказательства теорем о длинах хорд, касательных и секущих
- Теорема о бабочке
- 🎥 Видео
Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

№ 16*. 1) Из одной точки проведены две касательные к окружности. Докажите, что отрезки касательных МР и MQ равны. 2) Докажите, что через одну точку не может проходить больше двух касательных к окружности.
1) В ΔОРМ и ΔOQM:
ОР = OQ, как радиусы,
ОР ⊥ МР, OQ ⊥ MQ (т.к. МР и MQ — касательные).
Таким образом, ΔОРМ = ΔOQM по 1-му признаку равенства треугольников. Откуда МР = МQ.
2) Пусть через точку М можно провести три касательных к окружности: МР, MQ, МА. Тогда из п. 1 следует, что МР = MQ = MA, откуда точки Р, Q, А лежат на одной окружности с центром М. Получилось, что две окружности имеют три общие очки. Противоречие. В задаче 14 § 5 мы это доказали. Таким образом, через данную точку нельзя провести более двух касательных к данной окружности.

задача №16
к главе «§ 5. Геометрические построения».
Видео:8 класс, 32 урок, Касательная к окружностиСкачать

Отрезки и прямые, связанные с окружностью. Теорема о бабочке
Отрезки и прямые, связанные с окружностью |
Свойства хорд и дуг окружности |
Теоремы о длинах хорд, касательных и секущих |
Доказательства теорем о длинах хорд, касательных и секущих |
Теорема о бабочке |
Видео:Отрезки касательных из одной точки до точек касания окружности равны | Окружность | ГеометрияСкачать

Отрезки и прямые, связанные с окружностью
| Фигура | Рисунок | Определение и свойства | ||||||||||||||||||||||||||
| Окружность | ![]() | |||||||||||||||||||||||||||
| Круг | ![]() | |||||||||||||||||||||||||||
| Радиус | ![]() | |||||||||||||||||||||||||||
| Хорда | ![]() | |||||||||||||||||||||||||||
| Диаметр | ![]() | |||||||||||||||||||||||||||
| Касательная | ![]() | |||||||||||||||||||||||||||
| Секущая | ![]() | |||||||||||||||||||||||||||
| Окружность |
![]() |
Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Конечная часть плоскости, ограниченная окружностью

Отрезок, соединяющий центр окружности с любой точкой окружности

Отрезок, соединяющий две любые точки окружности

Хорда, проходящая через центр окружности.
Диаметр является самой длинной хордой окружности

Прямая, имеющая с окружностью только одну общую точку.
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Прямая, пересекающая окружность в двух точках
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Свойства хорд и дуг окружности
| Фигура | Рисунок | Свойство |
| Диаметр, перпендикулярный к хорде | ![]() | Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам. |
| Диаметр, проходящий через середину хорды | Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам. | |
| Равные хорды | ![]() | Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности. |
| Хорды, равноудалённые от центра окружности | Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны. | |
| Две хорды разной длины | ![]() | Большая из двух хорд расположена ближе к центру окружности. |
| Равные дуги | ![]() | У равных дуг равны и хорды. |
| Параллельные хорды | ![]() | Дуги, заключённые между параллельными хордами, равны. |
| Диаметр, перпендикулярный к хорде |
![]() |
Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

Большая из двух хорд расположена ближе к центру окружности.

У равных дуг равны и хорды.

Дуги, заключённые между параллельными хордами, равны.
Видео:Урок по теме КАСАТЕЛЬНАЯ К ОКРУЖНОСТИСкачать

Теоремы о длинах хорд, касательных и секущих
| Фигура | Рисунок | Теорема | ||||||||||||||||
| Пересекающиеся хорды | ![]() | |||||||||||||||||
| Касательные, проведённые к окружности из одной точки | ![]() | |||||||||||||||||
| Касательная и секущая, проведённые к окружности из одной точки | ![]() | |||||||||||||||||
| Секущие, проведённые из одной точки вне круга | ![]() | |||||||||||||||||
| Пересекающиеся хорды | ||
![]() | ||
| Касательные, проведённые к окружности из одной точки | ||
![]() | ||
| Касательная и секущая, проведённые к окружности из одной точки | ||
![]() | ||
| Секущие, проведённые из одной точки вне круга | ||
![]() | ||
| Пересекающиеся хорды |
![]() |
Произведения длин отрезков, на которые разбита каждая из хорд, равны:
Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.
Видео:Вариант 77, № 7. Свойство касательной. Теорема о касательных, проведенных из одной точки. Задача 1Скачать

Доказательства теорем о длинах хорд, касательных и секущих
Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).
Тогда справедливо равенство
Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство
откуда и вытекает требуемое утверждение.
Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).
Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство
Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство
откуда и вытекает требуемое утверждение.
Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).
Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство
Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).
Точка B – точка касания. В силу теоремы 2 справедливы равенства
откуда и вытекает требуемое утверждение.
Видео:№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВССкачать

Теорема о бабочке
Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.
Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:
Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим
Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим
Воспользовавшись теоремой 1, получим
Воспользовавшись равенствами (1) и (2), получим
Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство
откуда вытекает равенство
что и завершает доказательство теоремы о бабочке.
🎥 Видео
Доказательство теоремы об отрезках касательных.Скачать

Окружность. 7 класс.Скачать

№641. Отрезки АВ и АС являются отрезками касательных к окружности с центром О, проведенными изСкачать

Задание 25 Свойство отрезков касательныхСкачать

Отрезки касательных, проведенных из одной точки, равны. Геометрия. 8 классСкачать

Секретная теорема из учебника геометрииСкачать

Касательные к окружности пересекаются в точке. Теорема и решение задач. Геометрия 7-8 классСкачать

Построение касательной к окружности.Скачать

№6. Три данные точки соединены попарно отрезками. Докажите, что все отрезки лежат в одной плоскости.Скачать

Докажите равенство отрезковСкачать

Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Отрезки касательных. Применение Чевы и Ван-Обеля. Точка Жергонна. (Геометрические конструкции)Скачать






Отрезки и прямые, связанные с окружностью



































