Доказательство третьего признака подобия треугольника

Три признака подобия треугольников

Теорема 1. Два треугольника подобны, если два угла одного треугольника соответственно равны двум углам другого.

Пусть в треугольниках ABC и А’В’С ∠A = ∠А’ ∠В = ∠B’ (в подобных треугольниках вершины соответственно равных углов часто обозначают одинаковыми буквами).

Доказать, что (Delta)ABС (sim) (Delta)А’В’С (рис. 367).

Доказательство третьего признака подобия треугольника

Прежде всего отметим, что из равенства двух углов данных треугольников следует, что и третьи углы их равны, т. е. ∠C = ∠С’.

Отложим от вершины В, например, на стороне AB треугольника ABC отрезок ВМ, равный отрезку А’В’. Из точки М проведём прямую MN || АС. Мы получили (Delta)MBN, который подобен (Delta)ABC. Но (Delta)MBN = (Delta)А’В’С’, так как ∠В = ∠В’ по условию теоремы; сторона MB = A’B’ по построению; ∠BMN = ∠A’ (∠BMN и ∠А’ порознь равны одному и тому же ∠А).

Если (Delta)MBN (sim) (Delta)AВС, то (Delta)А’В’С’ (sim) (Delta)ABC. Эта теорема выражает 1-й признак подобия треугольников.

Следствия. 1. Равносторонние треугольники подобны.

2. Равнобедренные треугольники подобны, если они имеют по равному углу при вершине или при основании.

3. Два прямоугольных треугольника подобны, если она имеют по равному острому углу.

4. Равнобедренные прямоугольные треугольники подобны.

Теорема 2 . Два треугольника подобны, если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, лежащие между ними, равны.

Пусть в треугольниках ABC и А’В’С’ (frac = frac) и ∠В = ∠В’

Требуется доказать, что (Delta)ABC (sim) (Delta)А’В’С’ (рис. 368).

Доказательство третьего признака подобия треугольника

Для доказательства отложим, например, на стороне AB треугольника ABC от вершины В отрезок ВМ, равный отрезку А’В’. Через точку М проведём прямую MN || АС. Полученный треугольник MBN подобен треугольнику ABC.

Докажем, что (Delta)MBN = (Delta)А’В’С’. В этих треугольниках ∠В = ∠В’ по условию теоремы, MB = А’В’ по построению. Чтобы убедиться в равенстве сторон BN и В’С, составим пропорцию AB /MB = BC /BN (она вытекает из параллельности АС и MN) и сравним её с пропорцией, которая дана в условии теоремы: (frac = frac). В этих двух пропорциях имеется по три равных члена, следовательно, равны и четвёртые их члены,

т. е. В’С’ = BN. Отсюда следует равенство треугольников MBN и А’В’С’.

Так как (Delta)MBN (sim) (Delta)А’В’С’, то, следовательно, и (Delta)А’В’С’ (sim) (Delta)ABС.

Эта теорема выражает 2-й признак подобия треугольников.

Следствие. Прямоугольные треугольники подобны, если катеты одного из них пропорциональны катетам другого.

Теорема 3. Два треугольника подобны, если три стороны одного треугольника пропорциональны трём сторонам другого треугольника.

Пусть в треугольниках ABC и А’В’С’ (frac = frac = frac) (рис. 369).

Требуется доказать, что (Delta)ABC (sim) (Delta)А’В’С’

Доказательство третьего признака подобия треугольника

Для доказательства отложим на стороне AB треугольника ABC от вершины В отрезок BM = А’В’. Из точки M проведём прямую MN || АС. Полученный треугольник MBN подобен треугольнику ABC. Следовательно, (frac = frac = frac).

Докажем, что (Delta)MBN = (Delta)А’В’С’. Для доказательства сравним две пропорции

(frac = frac) и (frac = frac).
В этих пропорциях имеется по три равных члена, следовательно, равны и четвёртые их члены, т.е. BN = В’С’.

Сравним ещё две пропорции: (frac = frac) и (frac = frac) . В этих пропорциях также имеется по три равных члена, следовательно, равны и четвёртые члены их, т. е. MN =А’С’.

Оказалось, что три стороны (Delta)BMN равны трём сторонам (Delta)А’В’С’, а именно:

MB = А’В’, BN = В’С’ и MN = А’С’.

Следовательно, (Delta)MBN = (Delta)А’В’С’, а (Delta)ABC (sim) (Delta)А’В’С’.

Эта теорема выражает 3-й признак подобия треугольников.

Видео:Геометрия 8 класс. Третий признак подобия треугольниковСкачать

Геометрия 8 класс. Третий признак подобия треугольников

Третий признак подобия треугольников

(Третий признак подобия треугольников — подобие треугольников по трём сторонам).

Если три стороны одного треугольника пропорциональны трём сторонам другого треугольника, то такие треугольники подобны.

Доказательство третьего признака подобия треугольникаДано: ΔABC, ΔA1B1C1,

Доказательство третьего признака подобия треугольника

Доказательство третьего признака подобия треугольника1) Отложим на луче A1B1 отрезок A1B2, A1B2=AB.

2) Через точку B2 проведём прямую B2С2, параллельную прямой B1C1.

Из подобия треугольников следует пропорциональность соответствующих сторон:

Доказательство третьего признака подобия треугольника

Доказательство третьего признака подобия треугольника

Так как по условию

Доказательство третьего признака подобия треугольника

Из равенства треугольников следует равенство соответствующих углов:

Что и требовалось доказать.

3-й признак подобия треугольников используется реже 1-го.

Видео:Третий признак подобия треугольников. Доказательство. 8 класс.Скачать

Третий признак подобия треугольников. Доказательство. 8 класс.

Подобные треугольники

Подобные треугольники — это треугольники, у которых все три угла равны, а все стороны одного треугольника в одно и то же число раз длиннее (или короче) сторон другого треугольника, то есть треугольники подобны если их углы равны, а сходственные стороны пропорциональны.

Сходственные стороны — это стороны двух треугольников, лежащие против равных углов.

Рассмотрим два треугольника Доказательство третьего признака подобия треугольникаABC и Доказательство третьего признака подобия треугольникаA1B1C1, у которых ∠A = ∠A1, ∠B = ∠B1, ∠C = ∠C1:

Доказательство третьего признака подобия треугольника

Стороны AB и A1B1, BC и B1C1, CA и C1A1, лежащие напротив равных углов, называются сходственными сторонами. Следовательно, отношения сходственных сторон равны:

AB=BC=AC= k,
A1B1B1C1A1C1

k — это коэффициент подобия ( число, равное отношению сходственных сторон подобных треугольников). Если k = 1, то треугольники равны, то есть равенство треугольников – это частный случай подобия.

Подобие треугольников обозначается знаком

: Доказательство третьего признака подобия треугольникаABC

Доказательство третьего признака подобия треугольникаA1B1C1.

Отношение площадей подобных треугольников равно квадрату коэффициента подобия. Если обозначить площади двух подобных треугольников буквами S и S1, то:

S= k 2 .
S1

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Первый признак подобия треугольников

Если два угла одного треугольника равны двум углам другого, то треугольники подобны.

Доказательство третьего признака подобия треугольника

то Доказательство третьего признака подобия треугольникаABC

Доказательство третьего признака подобия треугольникаA1B1C1.

Видео:63. Третий признак подобия треугольниковСкачать

63. Третий признак подобия треугольников

Второй признак подобия треугольников

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами, равны, то треугольники подобны.

Доказательство третьего признака подобия треугольника

ЕслиAB=AC, ∠A = ∠A1,
A1B1A1C1
то Доказательство третьего признака подобия треугольникаABC

Доказательство третьего признака подобия треугольникаA1B1C1.

Видео:8 класс, 24 урок, Третий признак подобия треугольниковСкачать

8 класс, 24 урок, Третий признак подобия треугольников

Третий признак подобия треугольников

Если три стороны одного треугольника пропорциональны трём сходственным сторонам другого, то треугольники подобны.

🔍 Видео

8 класс, 22 урок, Первый признак подобия треугольниковСкачать

8 класс, 22 урок, Первый признак подобия треугольников

Третий признак равенства треугольников | Теорема + доказательствоСкачать

Третий признак равенства треугольников | Теорема + доказательство

Подобие треугольников. Вся тема за 9 минут | ОГЭ по математике | Молодой РепетиторСкачать

Подобие треугольников. Вся тема за 9 минут | ОГЭ по математике | Молодой Репетитор

Первый признак подобия треугольников. Доказательство. 8 класс.Скачать

Первый признак подобия треугольников. Доказательство. 8 класс.

Третий признак равенства треугольников (доказательство) - геометрия 7 классСкачать

Третий признак равенства треугольников (доказательство) - геометрия 7 класс

Второй и третий признаки подобия треугольников (доказательство) - 8 класс геометрияСкачать

Второй и третий признаки подобия треугольников (доказательство) - 8 класс геометрия

8 класс, 23 урок, Второй признак подобия треугольниковСкачать

8 класс, 23 урок, Второй признак подобия треугольников

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Геометрия 8 класс. Второй признак подобия треугольниковСкачать

Геометрия 8 класс. Второй признак подобия треугольников

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие ТреугольниковСкачать

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие Треугольников

Доказательство 1 признака подобия треугольников.Скачать

Доказательство 1 признака подобия треугольников.

Геометрия 8 класс (Урок№15 - Признаки подобия треугольников.)Скачать

Геометрия 8 класс (Урок№15 - Признаки подобия треугольников.)

Второй признак подобия треугольников. Доказательство. 8 класс.Скачать

Второй признак подобия треугольников. Доказательство. 8 класс.

Первый признак равенства треугольников. 7 класс.Скачать

Первый признак равенства треугольников. 7 класс.

7 класс, 15 урок, Первый признак равенства треугольниковСкачать

7 класс, 15 урок, Первый признак равенства треугольников
Поделиться или сохранить к себе: