Доказательство свойств прямоугольных треугольников

Прямоугольный треугольник

Прямоугольный треугольник – треугольник, в котором один угол прямой (то есть равен 90˚).

Сторона, противоположная прямому углу, называется гипотенузой прямоугольного треугольника.

Стороны, прилежащие к прямому углу, называются катетами .

Доказательство свойств прямоугольных треугольников

Признаки равенства прямоугольных треугольников

Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны ( по двум катетам ).

Доказательство свойств прямоугольных треугольников

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны ( по катету и острому углу ).

Доказательство свойств прямоугольных треугольниковЕсли гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и острому углу ).

Доказательство свойств прямоугольных треугольников

Если гипотенуза и катет одного прямоугольного треугольника равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и катету ).

Доказательство свойств прямоугольных треугольников

Свойства прямоугольного треугольника

1. Сумма острых углов прямоугольного треугольника равна 90˚.

2. Катет, противолежащий углу в 30˚, равен половине гипотенузы.

И обратно, если в треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚.

Доказательство свойств прямоугольных треугольников

3. Теорема Пифагора:

Доказательство свойств прямоугольных треугольников, где Доказательство свойств прямоугольных треугольников– катеты, Доказательство свойств прямоугольных треугольников– гипотенуза. Видеодоказательство

Доказательство свойств прямоугольных треугольников

4. Площадь Доказательство свойств прямоугольных треугольниковпрямоугольного треугольника с катетами Доказательство свойств прямоугольных треугольников:

Доказательство свойств прямоугольных треугольников

5. Высота Доказательство свойств прямоугольных треугольниковпрямоугольного треугольника, проведенная к гипотенузе выражается через катеты Доказательство свойств прямоугольных треугольникови гипотенузу Доказательство свойств прямоугольных треугольниковследующим образом:

Доказательство свойств прямоугольных треугольников

Доказательство свойств прямоугольных треугольников

6. Центр описанной окружности – есть середина гипотенузы.

Доказательство свойств прямоугольных треугольников

7. Радиус Доказательство свойств прямоугольных треугольниковописанной окружности есть половина гипотенузы Доказательство свойств прямоугольных треугольников:

Доказательство свойств прямоугольных треугольников

8. Медиана, проведенная к гипотенузе, равна ее половине

9. Радиус Доказательство свойств прямоугольных треугольниковвписанной окружности выражается через катеты Доказательство свойств прямоугольных треугольникови гипотенузу Доказательство свойств прямоугольных треугольниковследующим образом:

Доказательство свойств прямоугольных треугольников

Доказательство свойств прямоугольных треугольников

Тригонометрические соотношения в прямоугольном треугольнике смотрите здесь.

Видео:Свойства прямоугольного треугольника. 7 класс.Скачать

Свойства прямоугольного треугольника. 7 класс.

Свойства прямоугольного треугольника

Доказательство свойств прямоугольных треугольников

Треугольник, у которого один из углов равен 90°, называют прямоугольным треугольником. Сторону, лежащую против угла в 90°, называют гипотенузой , две другие стороны называют катетами .

Катеты прямоугольного треугольника

Длины катетов прямоугольного треугольника меньше длины гипотенузы.

Доказательство свойств прямоугольных треугольников

Равнобедренным прямоугольным треугольником называют такой прямоугольный треугольник, у которого равны катеты.
Острые углы равнобедренного прямоугольного треугольника равны 45°.

Доказательство свойств прямоугольных треугольников

Катет прямоугольного треугольника, лежащий против угла в 30° , равен половине гипотенузы.

Катет, равный половине гипотенузы

Если в прямоугольном треугольнике один из катетов равен половине гипотенузы, то этот катет лежит против угла в 30° .

Медиана, проведённая к гипотенузе прямоугольного треугольника

Доказательство свойств прямоугольных треугольников

Медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна половине гипотенузы.

Медиана треугольника, равная половине стороны, к которой она проведена

Если в треугольнике медиана равна половине стороны, к которой она проведена, то такой треугольник является прямоугольным.

Доказательство свойств прямоугольных треугольников

Середина гипотенузы прямоугольного треугольника является центром описанной около него окружности.

Если в треугольнике центр описанной окружности лежит на одной из сторон, то этот треугольник является прямоугольным треугольником, а центр описанной окружности совпадает с серединой гипотенузы.

Доказательство свойств прямоугольных треугольников

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов

Обратная теорема Пифагора

Если в треугольнике квадрат одной стороны равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным

ФигураРисунокФормулировка
Прямоугольный треугольник
Равнобедренный прямоугольный треугольник
Прямоугольный треугольник с углом в 30°

Доказательство свойств прямоугольных треугольников

Определение прямоугольного треугольника:

Треугольник, у которого один из углов равен 90° , называют прямоугольным треугольником .

Сторону, лежащую против угла в 90° , называют гипотенузой , две другие стороны называют катетами .

Свойство катетов прямоугольного треугольника:

Длины катетов прямоугольного треугольника меньше длины гипотенузы.

Прямоугольный треугольник
Равнобедренный прямоугольный треугольник
Доказательство свойств прямоугольных треугольников

Определение равнобедренного прямоугольного треугольника:

Равнобедренным прямоугольным треугольником называют такой прямоугольный треугольник, у которого равны катеты.

Свойство углов прямоугольного треугольника:

Острые углы равнобедренного прямоугольного треугольника равны 45° .

Прямоугольный треугольник с углом в 30°
Доказательство свойств прямоугольных треугольников

Свойство прямоугольного треугольника с углом в 30° :

Катет прямоугольного треугольника, лежащий против угла в 30° , равен половине гипотенузы.

Признак прямоугольного треугольника с углом в 30° :

Если в прямоугольном треугольнике один из катетов равен половине гипотенузы, то этот катет лежит против угла в 30° .

Медиана, проведённая к гипотенузе прямоугольного треугольника
Доказательство свойств прямоугольных треугольников

Свойство медианы, проведенной к гипотенузе прямоугольного треугольника:

Медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна половине гипотенузы.

Признак прямоугольного треугольника:

Если в треугольнике медиана равна половине стороны, к которой она проведена, то такой треугольник является прямоугольным.

Центр описанной окружности
Доказательство свойств прямоугольных треугольников

Свойство окружности, описанной около прямоугольного треугольника:

Середина гипотенузы прямоугольного треугольника является центром описанной около него окружности.

Признак прямоугольного треугольника:

Если в треугольнике центр описанной окружности лежит на одной из сторон, то этот треугольник является прямоугольным треугольником, а центр описанной окружности совпадает с серединой гипотенузы.

Доказательство свойств прямоугольных треугольников

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов

Обратная теорема Пифагора:

Если в треугольнике квадрат одной стороны равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным

Видео:Прямоугольный треугольник. Свойства, доказательства.Скачать

Прямоугольный треугольник. Свойства, доказательства.

Прямоугольный треугольник: Признаки Равенства и Подобия

Видео:7 класс, 35 урок, Некоторые свойства прямоугольных треугольниковСкачать

7 класс, 35 урок, Некоторые свойства прямоугольных треугольников

Определение

Прямоугольный треугольник — это треугольник, в котором один из углов прямой.

Гипотенуза в прямоугольном треугольнике — это сторона напротив прямого угла.


Катет в прямоугольном треугольнике
— это две стороны прилежащие к прямому углу.

Доказательство свойств прямоугольных треугольников

Видео:Доказательство свойств и признаков прямоугольных треугольниковСкачать

Доказательство свойств и признаков прямоугольных треугольников

Свойства прямоугольного треугольника

В прямоугольном треугольнике:

  1. Сумма острых углов 90˚.
  2. Катет, противолежащий углу в 30˚, равен половине гипотенузы.
  3. Медиана, проведенная к гипотенузе, равна ее половине.
  4. Центр описанной окружности — середина гипотенузы.
    Доказательство свойств прямоугольных треугольников

Формулы:

  1. Площадь прямоугольного треугольника равна
    половине произведения катетов:
    Доказательство свойств прямоугольных треугольников
  2. Радиус описанной окружности около прямоугольного
    треугольника равен половине гипотенузы:
    Доказательство свойств прямоугольных треугольников
  3. Радиус вписанной окружности в прямоугольный треугольник
    выражается следующим образом:
    Доказательство свойств прямоугольных треугольников
  4. Квадрат гипотенузы равен сумме квадратов катетов:

Доказательство свойств прямоугольных треугольников

Видео:7 класс, 36 урок, Признаки равенства прямоугольных треугольниковСкачать

7 класс, 36 урок, Признаки равенства прямоугольных треугольников

Признаки равенства прямоугольных треугольников

С помощью признаков равенства прямоугольных треугольников
можно доказать что прямоугольные треугольники равны.

  1. По двум катетам:
    Если два катета одного прямоугольного треугольника соответственно
    равны двум катетам другого прямоугольного треугольника,
    то такие треугольники равны.
    Доказательство свойств прямоугольных треугольников
  2. По катету и гипотенузе:
    Если катет и гипотенуза одного прямоугольного треугольника соответственно
    равны катету и гипотенузе другого прямоугольного треугольника,
    то такие треугольники равны.
    Доказательство свойств прямоугольных треугольников
  3. По гипотенузе и острому углу:
    Если гипотенуза и острый угол одного прямоугольного треугольника соответственно
    равны гипотенузе и острому углу другого прямоугольного треугольника,
    то такие треугольникиравны.
    Доказательство свойств прямоугольных треугольников
  4. По катету и острому углу:
    Если катет и острый угол одного прямоугольного треугольника соответственно
    равны катету и острому углу другого прямоугольного треугольника,
    то такие треугольники равны.

Доказательство свойств прямоугольных треугольников

Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Признаки прямоугольного треугольника

С помощью признаков прямоугольного треугольника можно
доказать, что треугольник прямоугольный.

  1. По теореме Пифагора:
    Если квадрат стороны равен сумме квадратов двух других сторон,
    то треугольник прямоугольный.
  2. По центру описанной окружности:
    Если центр описанной окружности лежит на стороне треугольника,
    то треугольник прямоугольный.
  3. По медиане:
    Если медиана треугольника равна половине стороны, к которой она проведена,
    то треугольник прямоугольный.
  4. По площади:
    Если площадь треугольника равна половине произведения двух его сторон,
    то треугольник прямоугольный.
  5. По радиусу описанной окружности:
    Если радиус описанной окружности равен половине,
    то треугольник прямоугольный.

Видео:ГЕОМЕТРИЯ 7 класс. Медиана прямоугольного треугольника. Свойство. Доказательство для 7 класса.Скачать

ГЕОМЕТРИЯ 7 класс. Медиана прямоугольного треугольника. Свойство. Доказательство для 7 класса.

Признаки подобия прямоугольных треугольников

С помощью признаков подобия прямоугольных треугольников можно
доказать, что прямоугольные треугольники подобны.

🎬 Видео

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)

Свойства прямоугольного треугольника. Практическая часть. 7 класс.Скачать

Свойства прямоугольного треугольника. Практическая часть.  7 класс.

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Геометрия 7. Урок 9 - Признаки равенства прямоугольных треугольниковСкачать

Геометрия 7. Урок 9 - Признаки равенства прямоугольных треугольников

35. Некоторые свойства прямоугольных треугольниковСкачать

35. Некоторые свойства прямоугольных треугольников

Свойства прямоугольного треугольника - 7 класс геометрияСкачать

Свойства прямоугольного треугольника - 7 класс геометрия

Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !Скачать

Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

СВОЙСТВА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА §18 геометрия 7 классСкачать

СВОЙСТВА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА §18 геометрия 7 класс

Некоторые свойства прямоугольных треугольников.Скачать

Некоторые свойства прямоугольных треугольников.

Некоторые свойства прямоугольного треугольника | Геометрия 7-9 класс #35 | ИнфоурокСкачать

Некоторые свойства прямоугольного треугольника | Геометрия 7-9 класс #35 | Инфоурок

Свойство медианы в прямоугольном треугольнике. 8 класс.Скачать

Свойство медианы в прямоугольном треугольнике. 8 класс.
Поделиться или сохранить к себе: