Доказательство существования окружности вписанной в треугольник

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Окружность, вписанная в треугольник. Основное свойство биссектрисы угла

Доказательство существования окружности вписанной в треугольникСуществование окружности, вписанной в треугольник. Основное свойство биссектрисы угла
Доказательство существования окружности вписанной в треугольникФормулы для радиуса окружности, вписанной в треугольник
Доказательство существования окружности вписанной в треугольникВывод формул для радиуса окружности, вписанной в треугольник

Видео:Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольникСкачать

Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольник

Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла

Определение 1 . Биссектрисой угла называют луч, делящий угол на две равные части.

Теорема 1 (Основное свойство биссектрисы угла) . Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).

Доказательство существования окружности вписанной в треугольник

Доказательство . Рассмотрим произвольную точку D , лежащую на биссектрисе угла BAC , и опустим из точки D перпендикуляры DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны острые углы DAF и DAE , а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если некоторая точка находится на одном и том же расстоянии от сторон угла, то она лежит на биссектрисе угла (рис.2).

Доказательство существования окружности вписанной в треугольник

Доказательство . Рассмотрим произвольную точку D , лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE , а гипотенуза AD – общая. Следовательно,

Доказательство существования окружности вписанной в треугольник

что и требовалось доказать.

Определение 2 . Окружность называют окружностью, вписанной в угол , если она касается касается сторон этого угла.

Теорема 3 . Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.

Доказательство . Пусть точка D – центр окружности, вписанной в угол BAC , а точки E и F – точки касания окружности со сторонами угла (рис.3).

Доказательство существования окружности вписанной в треугольник

Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE (как радиусы окружности радиусы окружности ), а гипотенуза AD – общая. Следовательно

что и требовалось доказать.

Замечание . Теорему 3 можно сформулировать и по-другому: отрезки касательных касательных , проведенных к окружности из одной точки, равны.

Определение 3 . Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника, и соединяющий вершину треугольника с точкой на противоположной стороне.

Теорема 4 . В любом треугольнике все три биссектрисы пересекаются в одной точке.

Доказательство . Рассмотрим две биссектрисы, проведённые из вершин A и C треугольника ABC , и обозначим точку их пересечения буквой O (рис. 4).

Доказательство существования окружности вписанной в треугольник

Опустим из точки O перпендикуляры OD , OE и OF на стороны треугольника. Поскольку точка O лежит на биссектрисе угла BAC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на биссектрисе угла ACB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на биссектрисе угла ABC . Таким образом, все три биссектрисы треугольника проходят через одну и ту же точку, что и требовалось доказать

Определение 4 . Окружностью, вписанной в треугольник , называют окружность, которая касается всех сторон треугольника (рис.5). В этом случае треугольник называют треугольником, описанным около окружности .

Доказательство существования окружности вписанной в треугольник

Следствие . В любой треугольник можно вписать окружность, причем только одну. Центром вписанной в треугольник окружности является точка, в которой пересекаются все биссектрисы треугольника.

Видео:Окружность, вписанная в треугольникСкачать

Окружность, вписанная в треугольник

Формулы для радиуса окружности, вписанной в треугольник

Формулы, позволяющие найти радиус вписанной в треугольник окружности , удобно представить в виде следующей таблицы.

Доказательство существования окружности вписанной в треугольник

a, b, c – стороны треугольника,
S – площадь,
r – радиус вписанной окружности,
p – полупериметр

Доказательство существования окружности вписанной в треугольник.

Доказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Доказательство существования окружности вписанной в треугольник

ФигураРисунокФормулаОбозначения
Произвольный треугольникДоказательство существования окружности вписанной в треугольник
Равнобедренный треугольникДоказательство существования окружности вписанной в треугольник
Равносторонний треугольникДоказательство существования окружности вписанной в треугольник
Прямоугольный треугольникДоказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
Доказательство существования окружности вписанной в треугольник.

Доказательство существования окружности вписанной в треугольник

где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
Доказательство существования окружности вписанной в треугольник.

Доказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Доказательство существования окружности вписанной в треугольник

Произвольный треугольник
Доказательство существования окружности вписанной в треугольник
Равнобедренный треугольник
Доказательство существования окружности вписанной в треугольник
Равносторонний треугольник
Доказательство существования окружности вписанной в треугольник
Прямоугольный треугольник
Доказательство существования окружности вписанной в треугольник
Произвольный треугольник
Доказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
Доказательство существования окружности вписанной в треугольник.

Доказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
Доказательство существования окружности вписанной в треугольник.

Равнобедренный треугольникДоказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

Равносторонний треугольникДоказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Прямоугольный треугольникДоказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Вывод формул для радиуса окружности, вписанной в треугольник

Теорема 5 . Для произвольного треугольника справедливо равенство

Доказательство существования окружности вписанной в треугольник

где a, b, c – стороны треугольника, r – радиус вписанной окружности, Доказательство существования окружности вписанной в треугольник– полупериметр (рис. 6).

Доказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

с помощью формулы Герона получаем:

Доказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

что и требовалось.

Теорема 6 . Для равнобедренного треугольника справедливо равенство

Доказательство существования окружности вписанной в треугольник

где a – боковая сторона равнобедренного треугольника, b – основание, r – радиус вписанной окружности (рис. 7).

Доказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

то, в случае равнобедренного треугольника, когда

Доказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

что и требовалось.

Теорема 7 . Для равностороннего треугольника справедливо равенство

Доказательство существования окружности вписанной в треугольник

где a – сторона равностороннего треугольника, r – радиус вписанной окружности (рис. 8).

Доказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

то, в случае равностороннего треугольника, когда

Доказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

что и требовалось.

Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.

Теорема 8 . Для прямоугольного треугольника справедливо равенство

Доказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

Доказательство . Рассмотрим рисунок 9.

Доказательство существования окружности вписанной в треугольник

Поскольку четырёхугольник CDOF является прямоугольником прямоугольником , у которого соседние стороны DO и OF равны, то этот прямоугольник – квадрат квадрат . Следовательно,

В силу теоремы 3 справедливы равенства

Доказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

Следовательно, принимая также во внимание теорему Пифагора, получаем

Доказательство существования окружности вписанной в треугольник

Доказательство существования окружности вписанной в треугольник

что и требовалось.

Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в прямоугольный треугольник, с помощью общей формулы для радиуса окружности, вписанной в произвольный треугольник.

Видео:Пара фактов про окружность | Ботай со мной #067 | Борис Трушин |Скачать

Пара фактов про окружность | Ботай со мной #067 | Борис Трушин |

Окружность, вписанная в треугольник

Видео:Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

Определение окружности, вписанной в треугольник

Определение 1. Окружностью, вписанной в треугольник называется окружность, которая находится внутри треугольника и касается всех его сторон (Рис.1).

Доказательство существования окружности вписанной в треугольник

Можно дать и другое определение окружности, вписанной в треугольник.

Определение 2. Окружностью, вписанной в треугольник называется наибольшая окружность, которая может находится внутри треугольника.

При этом треугольник называется треугольником описанным около окружности . Центр вписанной в треугольник окружности явлется точка пересечения биссектрис треугольника. Центр окружности вписанной в треугольник называется инцентром треугольника.

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Теорема об окружности, вписанной в треугольник

Теорема 1. В любой треугольник можно вписать окружность.

Доказательство существования окружности вписанной в треугольник

Доказательство. Пусть задан произвольный треугольник ABC (Рис.2). Обозначим точкой O точку пересечения биссектрис треугольника. Проведем из точки O перпендикуляры OK, OL и OM к сторонам AB, AC, BC, соответственно. Поскольку точка O равноудалена от сторон треугольника ABC, то OK=OL=OM. Тогда окружность с центром O и радиусом OK проходит через три точки K, L, M. Стороны AB, AC, BC треугольника ABC касаются этой окружности в точках K, L, M, поскольку они перпендикулярны к радиусам OK, OL, OM, соответственно. Следовательно, окружность с центром O и радиусом OK является вписанной в треугольник ABC.Доказательство существования окружности вписанной в треугольник

Замечание 1. В любой треугольник можно вписать только одну окружность.

Доказательство. Допустим, что в треугольник можно вписать две окружности. Тогда центр каждой из этих окружностей равноудален от сторон треугольника и совпадает с точкой O пересечения биссектрис треугольника. Радиус этих окружностей равен расстоянию от точки O до сторон треугольника. Поэтому эти окружности совпадают.Доказательство существования окружности вписанной в треугольник

Видео:Описанная и вписанная окружности треугольника - 7 класс геометрияСкачать

Описанная и вписанная окружности треугольника - 7 класс геометрия

Вписанная и описанная окружности

Вы будете перенаправлены на Автор24

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Вписанная окружность

Если все стороны многоугольника являются касательными одной окружности, то такая окружность называется вписанной в многоугольник (рис 1).

Многоугольник, удовлетворяющий условию определения 1, называется описанным около окружности.

Доказательство существования окружности вписанной в треугольник

Рисунок 1. Вписанная окружность

Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Теорема 1 (об окружности, вписанной в треугольник)

В любой треугольник можно вписать окружность и притом только одну.

Доказательство.

Рассмотрим треугольник $ABC$. Проведем в нем биссектрисы, которые пересекаются в точке $O$ и проведем из нее перпендикуляры на стороны треугольника (Рис. 2)

Доказательство существования окружности вписанной в треугольник

Рисунок 2. Иллюстрация теоремы 1

Существование: Проведем окружность с центром в точке $O$ и радиусом $OK. $Так как точка $O$ лежит на трех биссектрисах, то она равноудалена от сторон треугольника $ABC$. То есть $OM=OK=OL$. Следовательно, построенная окружность также проходит через точки $M и L$. Так как $OM,OK и OL$ — перпендикуляры к сторонам треугольника, то по теореме о касательной к окружности, построенная окружность касается всех трех сторон треугольника. Следовательно, в силу произвольности треугольника, в любой треугольник можно вписать окружность.

Готовые работы на аналогичную тему

Единственность: Предположим, что в треугольник $ABC$ можно вписать еще одну окружность с центром в точке $O’$. Её центр равноудален от сторон треугольника, а, следовательно, совпадает с точкой $O$ и имеет радиус, равный длине $OK$. Но тогда эта окружность совпадет с первой.

Теорема доказана.

Следствие 1: Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис.

Приведем еще несколько фактов, связанных с понятием вписанной окружности:

Не во всякий четырехугольник можно вписать окружность.

В любом описанном четырехугольнике суммы противоположных сторон равны.

Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

Видео:ОГЭ Задание 25 Окружность вписанная в прямоугольный треугольникСкачать

ОГЭ Задание 25 Окружность вписанная в прямоугольный треугольник

Описанная окружность

Если на окружности лежат все вершины многоугольника, то окружность называется описанной около многоугольника (Рис. 3).

Многоугольник, удовлетворяющий условию определения 2, называется вписанным в окружность.

Доказательство существования окружности вписанной в треугольник

Рисунок 3. Описанная окружность

Видео:Строим вписанную в данный треугольник окружность (Задача 2).Скачать

Строим вписанную в данный треугольник окружность (Задача 2).

Теорема 2 (об окружности, описанной около треугольника)

Около любого треугольника можно описать окружность и притом только одну.

Доказательство.

Рассмотрим треугольник $ABC$. Проведем в нем серединные перпендикуляры, пересекающиеся в точке $O$, и соединим ее с вершинами треугольника (рис. 4)

Доказательство существования окружности вписанной в треугольник

Рисунок 4. Иллюстрация теоремы 2

Существование: Построим окружность с центром в точке $O$ и радиусом $OC$. Точка $O$ равноудалена от вершин треугольника, то есть $OA=OB=OC$. Следовательно, построенная окружность проходит через все вершины данного треугольника, значит, она является описанной около этого треугольника.

Единственность: Предположим, что около треугольника $ABC$ можно описать еще одну окружность с центром в точке $O’$. Её центр равноудален от вершин треугольника, а, следовательно, совпадает с точкой $O$ и имеет радиус, равный длине $OC.$ Но тогда эта окружность совпадет с первой.

Теорема доказана.

Следствие 1: Центр описанной около треугольника окружности совпадает с точкой пересечения его серединных перпендикуляров.

Приведем еще несколько фактов, связанных с понятием описанной окружности:

Около четырехугольника не всегда можно описать окружность.

В любом вписанном четырехугольнике сумма противоположных углов равна $^0$.

Если сумма противоположных углов четырехугольника равна $^0$, то около него можно описать окружность.

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Пример задачи на понятия вписанной и описанной окружности

В равнобедренном треугольнике основание равно 8 см, боковая сторона равна 5 см. Найти радиус вписанной окружности.

Решение.

Рассмотрим треугольник $ABC$. По следствию 1, мы знаем, что центр вписанной окружности лежит на пересечении биссектрис. Проведем биссектрисы $AK$ и $BM$, которые пересекаются в точке $O$. Проведем перпендикуляр $OH$ из точки $O$ на сторону $BC$. Изобразим рисунок:

Доказательство существования окружности вписанной в треугольник

Так как треугольник равнобедренный, то $BM$ и медиана и высота. По теореме Пифагора $^2=^2-^2, BM=sqrt<^2-frac<^2>>=sqrt=sqrt=3$. $OM=OH=r$ — искомый радиус вписанной окружности. Так как $MC$ и $CH$ отрезки пересекающихся касательных, то по теореме о пересекающихся касательных, имеем $CH=MC=4 см$. Следовательно, $BH=5-4=1 см$. $BO=3-r$. Из треугольника $OHB$, по теореме Пифагора, получим:

Ответ: $frac$.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 29 03 2022

🎥 Видео

Построение окружности, вписанной в треугольникСкачать

Построение окружности, вписанной в треугольник

РАДИУС вписанной окружности #математика #огэ #огэматематика #данирСкачать

РАДИУС вписанной окружности #математика #огэ #огэматематика #данир

Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.Скачать

Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.

Задание 24 Радиус окружности вписанной в прямоугольный треугольникСкачать

Задание 24  Радиус окружности вписанной в прямоугольный треугольник

Построить окружность, вписанную в треугольникСкачать

Построить окружность, вписанную в треугольник

№691. Точка касания окружности, вписанной в равнобедренный треугольник, делит однуСкачать

№691. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну

8 класс, 38 урок, Вписанная окружностьСкачать

8 класс, 38 урок, Вписанная окружность
Поделиться или сохранить к себе: