Доказательство пересечения медиан треугольника

Видео:Точка пересечения медиан в треугольникеСкачать

Точка пересечения медиан в треугольнике

Медиана треугольника

Определение . Медианой треугольника называют отрезок, соединяющий вершину треугольника с серединой противоположной стороны (рис 1).

Доказательство пересечения медиан треугольника

Поскольку в каждом треугольнике имеется три вершины, то в каждом треугольнике можно провести три медианы.

На рисунке 1 медианой является отрезок BD .

Утверждение 1 . Медиана треугольника делит его на два треугольника равной площади ( равновеликих треугольника).

Доказательство . Проведем из вершины B треугольника ABC медиану BD и высоту BE (рис. 2),

Доказательство пересечения медиан треугольника

и заметим, что (см. раздел нашего справочника «Площадь треугольника»)

Доказательство пересечения медиан треугольника

Доказательство пересечения медиан треугольника

Поскольку отрезок BD является медианой, то

Доказательство пересечения медиан треугольника

что и требовалось доказать.

Утверждение 2 . Точка пересечения двух любых медиан треугольника делит каждую из этих медиан в отношении 2 : 1 , считая от вершины треугольника.

Доказательство . Рассмотрим две любых медианы треугольника, например, медианы AD и CE , и обозначим точку их пересечения буквой O (рис. 3).

Доказательство пересечения медиан треугольника

Обозначим середины отрезков AO и CO буквами F и G соответственно (рис. 4).

Доказательство пересечения медиан треугольника

Теперь рассмотрим четырёхугольник FEDG (рис. 5).

Доказательство пересечения медиан треугольника

Сторона ED этого четырёхугольника является средней линией в треугольнике ABC . Следовательно,

Доказательство пересечения медиан треугольника

Сторона FG четырёхугольника FEDG является средней линией в треугольнике AOC . Следовательно,

Доказательство пересечения медиан треугольника

Доказательство пересечения медиан треугольника

Отсюда вытекает, что точка O делит каждую из медиан AD и CE в отношении 2 : 1 , считая от вершины треугольника.

Следствие . Все три медианы треугольника пересекаются в одной точке.

Доказательство . Рассмотрим медиану AD треугольника ABC и точку O , которая делит эту медиану в отношении 2 : 1 , считая от вершины A (рис.7).

Доказательство пересечения медиан треугольника

Поскольку точка, делящая отрезок в заданном отношении, является единственной, то и другие медианы треугольника будут проходить через эту точку, что и требовалось доказать.

Определение . Точку пересечения медиан треугольника называют центроидом треугольника.

Утверждение 3 . Медианы треугольника делят треугольник на 6 равновеликих треугольников (рис. 8).

Доказательство пересечения медиан треугольника

Доказательство . Докажем, что площадь каждого из шести треугольников, на которые медианы разбивают треугольник ABC , равна Доказательство пересечения медиан треугольникаплощади треугольника ABC. Для этого рассмотрим, например, треугольник AOF и опустим из вершины A перпендикуляр AK на прямую BF (рис. 9).

Видео:Теорема о трёх медианахСкачать

Теорема о трёх медианах

Точка пересечения медиан треугольника — свойства, формулы и теоремы

Доказательство пересечения медиан треугольника

Видео:Теорема о точке пересечения медиан треугольника. Доказательство. 8 класс.Скачать

Теорема о точке пересечения медиан треугольника. Доказательство. 8 класс.

Общие сведения

Перед доказательством теорем необходимо ознакомиться с основными понятиями. Прямой называется совокупность точек, расположенных в одной плоскости, через которые можно провести линию без искажений в пространстве. Отрезок — часть прямой, ограниченной правой и левой границами.

Треугольник (обозначается «Δ») — геометрическая фигура, состоящая из трех сторон и вершин. Предпоследние являются отрезками, а последние — точками, не лежащими на одной прямой и соединяющими стороны между собой. Следует отметить, что треугольники бывают нескольких типов. К ним относятся следующие:

Доказательство пересечения медиан треугольника

  1. Произвольный.
  2. Равнобедренный.
  3. Равносторонний (правильный).

Первая группа состоит из сторон различной длины. При двух эквивалентных между собой сторонах фигура является равнобедренной. Обязательным условием для третьей группы считается равенство всех сторон. Кроме того, фигуры делятся по типу градусных мер таким образом:

  1. Остроугольные.
  2. Прямоугольные.
  3. Тупоугольные.

Остроугольным называется треугольник, у которого углы (в задачах обозначается символом «∠ «) меньше 90 градусов.

Если у него один из ∠ эквивалентен 90, то этот признак свидетельствует о принадлежности его ко второму типу. Когда у фигуры хотя бы один из ∠ больше 90, тогда он принадлежит к третьему виду.

Понятие дополнительных отрезков

Доказательство пересечения медиан треугольника

У любого Δ существуют дополнительные отрезки, которые используются при решении задач по геометрии. К ним относятся следующие: медиана, биссектриса и высота. Они существенно отличаются между собой в произвольных треугольниках, а также совпадают в равнобедренных и правильных геометрических телах.

Медиана (М) — некоторый отрезок, исходящий из вершины на середину стороны. Иными словами, любой геометрический элемент, опущенный из вершины на среднюю точку, является медианой. Последних в треугольнике может быть не более трех.

Биссектриса (Б) — часть прямой, которая делит угол на два равных компонента. В любом треугольнике можно провести всего три таких отрезка. Высота (В) — перпендикуляр, опущенный из вершины на противоположную сторону. Следует отметить, что высоты бывают внешними и внутренними. Первые проводятся из вершины на проекцию Δ, а вторые находятся внутри фигуры. В каждом треугольнике можно провести определенное количество дополнительных отрезков:

Доказательство пересечения медиан треугольника

  1. Произвольный: М — 3, В — 3 и Б — 3. Все они не совпадают между собой.
  2. Равнобедренный: М — 2, В — 2, Б — 2 и М=В=Б=1 (совпадают между собой). Всего элементов: 2+2+2+3*1=9.
  3. Правильный: М=В=Б=3. Общее количество элементов: 3.

Во втором случае М, В и Б совпадают между собой только один раз, а в последнем — полное сходство, поскольку медианы являются биссектрисами и высотами. Их точка пересечения — центр треугольника. Далее следует перейти к непосредственному доказательству теорем.

Теорема о взаимном пересечении

Первую базовую теорему, которую следует разобрать, имеет такую формулировку: медианы любого треугольника пересекаются в одной точке, которая является центром фигуры. Ее доказательство осуществляется по такому алгоритму:

Доказательство пересечения медиан треугольника

  1. Начертить произвольный ΔSTU. Провести в нем медианы SS’ и TT’. Обозначить точку их пересечения «F».
  2. Доказывать утверждение нужно от противного, т. е. предположить, что медианы не пересекаются, т. е. являются параллельными отрезками (SS’||TT’).
  3. Из этого утверждения следует, что сторона фигуры ST является их секущей.
  4. Следовательно, ∠S+∠T=360. Однако это противоречит свойству градусных мер углов треугольника, которые должны быть не более 180. Исходя из этого, предыдущая гипотеза не подтверждается.
  5. На основании вывода из четвертого пункта теорема доказана полностью.

Аналогично можно доказать, что медиана UU’ также пересекается с SS’ и TT’ в точке F. Для этой цели необходимо начертить еще один треугольник с таким же обозначением, т. е. ΔSTU.

После этого выполнить все пять пунктов алгоритма, но для медиан SS’ и UU’. Затем сопоставить два доказательства для получения общей формулировки.

Утверждения о соотношении

Однако для решения задач одной теоремы о пересечении медиан недостаточно. Математики доказали несколько других утверждений, которые могут быть полезными при нахождении неизвестных величин. Первая из них гласит, что точка, в которой пересекаются медианы, пропорционально делит медианы 2:1 относительно вершины. Для доказательства утверждения необходимо воспользоваться такой методикой:

  1. Начертить ΔSTU и провести в нем SS’ и UU’, обозначив их пересечения точкой «F».
  2. Из точек S’ и U’ опустить отрезки на SF и UF так, чтобы разделить их на две равные части (U» и S»).
  3. В результате операций, выполненных во втором пункте, получился четырехугольник. Его сторона U’S’ является средней линией ΔSTU, т. е. U’S’||SU и U’S’=0,5SU.
  4. Сторона U»S» — средняя линия ΔSFU, т. е. U»S»||SU и U»S»=1/2(SU).
  5. Из третьего и четвертого пунктов можно сделать вывод, что U’S’U»S» — параллелограмм, у которого диагонали пересекаются в точке и делятся на две равные части.
  6. Выполнив анализ информации, полученной на пятом шаге, можно завершить доказательство теоремы, т. к. диагонали параллелограмма делятся в пропорциональном соотношении 2:1.

Следующим полезным утверждением является формула, позволяющая найти длину медианы. Она в словесном эквиваленте звучит таким образом: длина равна квадратному корню из суммы половины квадратов двух других сторон, не принадлежащих ей, без четвертой части квадрата стороны, на которую она опущена. Для доказательства рекомендуется использовать такой алгоритм:

  1. Начертить ΔSTU с медианой SS’=М (опущена на UT), обозначив его стороны s=US, t=ST и u=UT.
  2. По свойству медианы: US’=0.5*UT.
  3. Образовались два треугольника ΔUSS’ и ΔTSS’.
  4. Для нахождения M необходимо к каждому Δ применить теорему косинусов. В результате этого получатся такие соотношения: s^2=M^2+(u/2)^2-2M(u/2)cos(∠U) и t^2=M^2+(u/2)^2-2M(u/2)cos(Pi-∠U).
  5. Выполняя математические операции по раскрытию скобок и складывая между собой полученные соотношения, получается искомая формула: M=[(s^2)/2 + (t^2)/2 — (u^2)/4]^(1/2).
  6. Утверждение доказано.

Теорема имеет следствие, представленное в виде соотношения, позволяющее выявить взаимосвязь между сторонами и медианами. Оно имеет такой вид: (М)^2 + (М)^2 + (М)^2=3/4(s^2+t^2+u^2).

Координаты точки

При решении задач очень часто необходимо находить координаты точки пересечения медиан произвольного ΔSTU. Доказательство или выведение этой формулы является очень сложным. Однако математики решили данную проблему. Они предлагают использовать уже готовое соотношение, состоящее из двух компонентов:

Вышеописанные формулы рекомендуется применять, когда требуется определить координаты точек без чертежа. Специалисты на ранних этапах обучения рекомендуют размещать треугольник в прямоугольной декартовой системе координат. После этого отмечать каждую вершину с заданными координатами, а затем проводить медианы.

Доказательство пересечения медиан треугольника

Для нахождения величины абсциссы и ординаты нужно из искомой точки опускать перпендикуляры на последние.

Нахождение координаты будет очень простым и удобным. Кроме того, в интернете существует множество приложений для этих целей. Они называются онлайн-калькуляторами.

Иногда встречаются задания со следующей формулировкой: выведите формулы, выражающие координаты точки пересечения медиан, с исходными данными (вершинами или сторонами). Для этого рекомендуется просто подставить искомые значения в соответствующие формулы нахождения абсциссы и ординаты.

Видео:№366. Докажите, что если М — точка пересечения медиан треугольника ABC, а О — произвольная точкаСкачать

№366. Докажите, что если М — точка пересечения медиан треугольника ABC, а О — произвольная точка

Полезные свойства

Математики для облегчения учебы вывели важные свойства медианы. К ним относятся следующие:

Доказательство пересечения медиан треугольника

  1. Точка пересечения является центром вписанной и описанной окружностей, почему ее еще и называют симметрией фигуры.
  2. Точки соприкосновения медиан со сторонами образуют средние линии искомого треугольника. Их всего три.
  3. Подобие фигур относительно исходной.
  4. Медианы делят произвольный треугольник на шесть подобных.
  5. Отрезок, опущенный на гипотенузу, делит ее на два радиуса описанной окружности.

На координатной плоскости, руководствуясь первым свойством, чертится треугольник. После этого требуется провести две медианы, обозначив общую точку (где они пересекаются). Далее необходимо поставить в нее иголку циркуля, и начертить окружность вокруг фигуры. Затем в искомом круге проводится диаметр D.

В результате у вписанной окружности величина радиуса должна соответствовать значению D/4. На основании этого необходимо полагать, что построение выполнено правильно. В противном случае допущена некоторая неточность.

Используя второе свойство, можно найти следующие параметры: площадь, стороны и другие элементы фигуры. В любых задачах допускается подобное дополнительное построение. Однако специалисты рекомендуют его применять только при необходимости, а не загромождать чертеж.

Третье и четвертое свойства применяются для подсчета площадей подобных фигур. Коэффициент подобия зависит от количества проведенных медиан:

Последние цифры являются коэффициентом подобия. В прямоугольном треугольнике медиана, опущенная из прямого угла, делит ее на две равные части-радиусы описанной окружности.

Таким образом, сведения о медианах в треугольнике расширяет возможности расчета некоторых параметров фигуры.

Видео:Что даёт точка пересечения медиан в треугольникеСкачать

Что даёт точка пересечения медиан в треугольнике

Свойство медиан треугольника

Свойство медиан треугольника может быть доказано многими способами. Доказательство, опирающееся на свойства параллелограмма и средней линии треугольника, может быть проведено сразу же после изучения соответствующих тем, что позволяет начать использовать свойство медиан треугольника уже с начала 8 класса.

(Свойство медиан треугольника)

Медианы треугольника пересекаются и в точке пересечения делятся в отношении 2:1, считая от вершины.

Доказательство пересечения медиан треугольникаДано : ABC, AA1, BB1, CC1 — медианы

Доказательство пересечения медиан треугольника

Доказательство пересечения медиан треугольника

Доказательство пересечения медиан треугольника1) Пусть M — середина отрезка AO, N — середина BO

(то есть AM=OM, BN=ON).

2) Соединим точки M, N, A1 и B1 отрезками.

Доказательство пересечения медиан треугольника

3) Так как AA1 и BB1 — медианы треугольника ABC, точка A1- середина отрезка BC, B1 — середина AC.

Следовательно, A1B1 — средняя линия треугольника ABC и

Доказательство пересечения медиан треугольника

Доказательство пересечения медиан треугольника

Значит, четырёхугольник MNA1B1 — параллелограмм (по признаку).

По свойству диагоналей параллелограмма

Доказательство пересечения медиан треугольника

Доказательство пересечения медиан треугольника

Доказательство пересечения медиан треугольника

Доказательство пересечения медиан треугольника

из чего следует, что

Доказательство пересечения медиан треугольника

5) Доказательство того факта, что все медианы треугольника пересекаются в одной точке, будем вести методом от противного.

Предположим, что третья медиана CC1 треугольника ABC пересекает медианы AA1 и BB1 в некоторой точке, отличной от точки O.

Тогда на каждой медиане есть две различные точки, делящие её в отношении 2:1, считая от вершины. Пришли к противоречию.

Таким образом, все три медианы треугольника пересекаются в одной точке и точка пересечения медиан делит каждую из их в отношении 2:1, считая от вершины:

Доказательство пересечения медиан треугольника

Что и требовалось доказать .

Видео:Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||

7 Comments

Промогите пожалуйста:
В прямоугольном треугольнике из вершины прямого угла до гипотенузы провели медиану длинной 50см и перпендикуляр 48см. Вычислить периметр.

Медиана, проведённая к гипотенузе, равна её половине. Следовательно, гипотенуза 100 см. Пусть катеты равны x см и y см. По теореме Пифагора x²+y²=100². Площадь треугольника равна половине произведения стороны на высоту, проведённую к этой стороне S=0,5∙100∙48 см², либо половине произведения катетов S=0,5∙x∙y. Отсюда xy=4800.
Решаем систему уравнений: x²+y²=100²; xy=4800. Решения (60;80) (80;60). То есть катеты 60 см и 80 см. Периметр P=60+80+100=240 см.
(Не обязательно доводить решение системы до конца. Достаточно найти x+y. Для этого к 1-му уравнению прибавим удвоенное 2-е, получим
x²+2xy+y²=19600; x+y=140).

Прошу помощи в решении задачи: на стороне ромба построен равносторонний треугольник. Отрезок, соединяющий точку пересечения диагоналей ромба с серединой стороны треугольника, составляет с ней угол 70 градусов. Найти острый угол ромба.

Во-первых, большое спасибо за решение, даже не ожидала ответа, но, по счастью, ошиблась! Но я к этому времени уже решила так:провела ВМ, которая в равностороннем треугольнике является также высотой.
Рассмотрим четырехугольник ОВМС: угол ВОС =углу ВМС=90 градусов (диагонали ромба взаимно перпендикулярны),отсюда, ВМ параллельна ОС, тогда угол МОС=20 градусам. Рассм. треугольник ОМС: угол МСО= 180-20-70=90 градусов, и одновременно= 60+x, т.о., угол х=30 градусам, и искомый острый угол ромба=60 градусам. Мы получили разные ответы, в чем может быть дело (окружности мы еще не проходили).

Наталия углы BOC и BMC не накрест лежащие и не внутренние односторонние, поэтому BM не параллельна OC. Но вариант решения без окружности возможен, добавила второй способ.

🎦 Видео

22 Медианы треугольника пересекаются в одной точкеСкачать

22 Медианы треугольника пересекаются в одной точке

🔥 Свойства МЕДИАНЫ #shortsСкачать

🔥 Свойства МЕДИАНЫ #shorts

Длина медианы треугольникаСкачать

Длина медианы треугольника

Как доказать, что биссектрисы треугольника пересекаются в одной точке?Скачать

Как доказать, что биссектрисы треугольника пересекаются в одной точке?

Как доказать теорему о медианах треугольника с использованием методов векторной алгебры?Скачать

Как доказать теорему о медианах треугольника с использованием методов векторной алгебры?

8. Медиана треугольника и её свойства.Скачать

8. Медиана треугольника и её свойства.

Пересечение биссектрис треугольника в одной точке, Геометрия 7 классСкачать

Пересечение биссектрис треугольника в одной точке,  Геометрия 7 класс

Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Свойство точки пересечения медиан треугольникаСкачать

Свойство точки пересечения медиан треугольника

Третья замечательная точка треугольника доказательствоСкачать

Третья замечательная точка треугольника   доказательство

Самое необычное доказательство свойства медиан | ЕГЭ Математика | Аня Матеманя | ТопскулСкачать

Самое необычное доказательство свойства медиан | ЕГЭ Математика | Аня Матеманя | Топскул

Свойство биссектрисы треугольника с доказательствомСкачать

Свойство биссектрисы треугольника с доказательством

Построение медианы в треугольникеСкачать

Построение медианы в треугольнике

Точка пересечения медиан треугольника.Скачать

Точка пересечения медиан треугольника.
Поделиться или сохранить к себе: