Доказательство медиан прямоугольных треугольников

Свойства медианы в прямоугольном треугольнике с доказательствами

В этой статье мы рассмотрим свойства медианы в прямоугольном треугольнике, а также их доказательства.

Медиана — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны. Для прямоугольного треугольника это будут медианы, проведённые с острого угла к серединам катетов или с прямого к центру гипотенузы (рис. 1).

Доказательство медиан прямоугольных треугольников

Видео:Свойства прямоугольного треугольника. 7 класс.Скачать

Свойства прямоугольного треугольника. 7 класс.

Свойства медианы в прямоугольном треугольнике

  1. Медианы в прямоугольном треугольнике пересекаются в одной точке, а точка пересечения делит их в соотношении два к одному считая от вершины, из которой проведена медиана.
  2. Медиана, проведённая из вершины прямого угла к гипотенузе, равна половине гипотенузы.
  3. Медиана, проведённая к гипотенузе прямоугольного треугольника, является радиусом описанной окружности.

Видео:Свойство медианы в прямоугольном треугольнике. 8 класс.Скачать

Свойство медианы в прямоугольном треугольнике. 8 класс.

Доказательства свойств

Первое свойство

Доказать, что медианы в прямоугольном треугольнике пересекаются в одной точке и делятся в пропорции 2:1, считая от вершины.

Доказательство:

  1. Рассмотрим прямоугольный треугольник ABC. Проведем две медианы AE и BD, которые пересекаются в точке X (рис. 2).

Доказательство медиан прямоугольных треугольников

Середины отрезков AX и BX обозначим, соответственно, буквами F и G (рисунок 3).

Доказательство медиан прямоугольных треугольников

Соединим между собой точки (D, F, G и E) и получим четырёхугольник DFGE (рис. 4).

Доказательство медиан прямоугольных треугольников

  • Сторона DE этого четырёхугольника будет средней линией треугольника ABC. Согласно определению: отрезок, соединяющий середины двух сторон треугольника, является его средней линией. При этом по свойству средняя линия параллельна не пересекающейся с ней стороне и равна половине этой стороны, то есть.
    DE || AB и DE = AB / 2.
  • Аналогично сторона FG треугольника AXB будет его средней линией.
    FG || AB и FG = AB / 2
  • Отсюда следует, что отрезки DE и FG являются параллельными и равными. Следовательно, четырехугольник DFGE – параллелограмм (по признаку параллелограмма).
  • Так как диагонали параллелограмма в точке пересечения делятся пополам, то
    FX=XE, GX=XD

    Доказательство медиан прямоугольных треугольников

  • Так как AF = FX (по построению), то и AF = FX = XE, аналогично DX = XG = GB.
  • Получается, что точка X делит обе медианы AE и BD в соотношении 2 к 1 считая от вершины треугольника.
  • Аналогично, мы сможем доказать, что точка пересечения 3-ей медианы, проведенной из прямого угла к гипотенузе, с медианой AE (или BD) будет делить ее в соотношении 2 к 1, считая от вершины. То есть наша 3-я медиана также пройдет через точку X. Отсюда следует, что все 3 наши медианы пересекаются в одной точке.
  • Что и требовалось доказать.

    Второе свойство

    Доказать, что медиана, проведённая с вершины прямого угла к гипотенузе, равна половине гипотенузы.

    Доказательство:

    1. Чтобы доказать это свойство рассмотрим прямоугольный треугольник ABC и проведём медиану к гипотенузе. Точку ее пересечения с гипотенузой обозначим буквой D (рис. 6).

    Доказательство медиан прямоугольных треугольников

    Отразим симметрично наш треугольник ABC относительно отрезка AB (рисунок 7). В результате получим четырёхугольник AEBC, в котором AD=DB (поскольку CD медиана к стороне AB) и CD=DE (по построению). То есть диагонали четырехугольника AEBC пересекаются и точкой пересечения делятся пополам. Отсюда следует, что AEBC является параллелограммом (по признаку параллелограмма).

    Доказательство медиан прямоугольных треугольников

  • Один из признаков прямоугольника говорит о том, что параллелограмм является прямоугольником, если хотя бы один из его углов прямой. Поскольку ∠ACB прямой (по построению), то AEBC — прямоугольник.
  • Поскольку диагонали прямоугольника равны и в точке пересечения делятся пополам (свойство прямоугольника), то AB = CE и AD = DB = CD = DE.

    Доказательство медиан прямоугольных треугольников

  • Так как AB = AD + DB, AD = BD и СD = AD = BD, то получается, что медиана AD, проведенная к гипотенузе AB равна половине ее длины.
  • Что и требовалось доказать.

    Третье свойство

    Доказать, что медиана, проведённая к гипотенузе прямоугольного треугольника, является радиусом описанной окружности.

    Доказательство:

    1. Опишем вокруг прямоугольного треугольника ABC окружность.

    Доказательство медиан прямоугольных треугольников

  • Поскольку точка C уже лежит на окружности, то для того, чтобы доказать, что медиана CM является радиусом, нам надо доказать, что точка M – центр описанной окружности (т.е. равноудалена от нее).
  • Так как медиана делит отрезок пополам, а медиана проведенная к гипотенузе равна ее половине (согласно доказанному выше свойству), то точка M будет равноудалена от всех вершин треугольника, которые в свою очередь касаются окружности (рисунок 8).
  • Отсюда следует, что окружность, описанная вокруг прямоугольного треугольника ABC будет иметь центр на середине гипотенузы (в точке M), а медиана CM будет радиусом описанной окружности.
  • Что и требовалось доказать.

    Доказательство медиан прямоугольных треугольников

    Понравилась статья, расскажите о ней друзьям:

    Видео:ГЕОМЕТРИЯ 7 класс. Медиана прямоугольного треугольника. Свойство. Доказательство для 7 класса.Скачать

    ГЕОМЕТРИЯ 7 класс. Медиана прямоугольного треугольника. Свойство. Доказательство для 7 класса.

    Медиана, проведенная к гипотенузе

    Определим и докажем, чему равна медиана прямоугольного треугольника, проведенная к гипотенузе.

    Медиана, проведенная к гипотенузе, равна половине гипотенузы.

    Дано: ∆ ABC, ∠ BCA=90º

    Доказать: медиана, проведенная к гипотенузе, равна половине гипотенузы.

    Доказательство медиан прямоугольных треугольников

    1) В прямоугольном треугольнике АВС из вершины прямого угла С проведем к гипотенузе AB отрезок CO так, чтобы CO=OA.

    2) ∆ AOC — равнобедренный с основанием AC (по определению равнобедренного треугольника).

    Доказательство медиан прямоугольных треугольников

    Значит, у него углы при основании равны: ∠ OAC = ∠ OCA=α.

    Доказательство медиан прямоугольных треугольников

    3) Так как сумма острых углов прямоугольного треугольника равна 90º, то в треугольнике ABC ∠ B=90º- α.

    4) Так как ∠ BCA=90º (по условию), то ∠ BCO=90º- ∠ OCA=90º-α.

    5) Рассмотрим треугольник BOC.

    ∠ BCO=90º-α, ∠ B=90º- α, следовательно, ∠ BCO= ∠ B.

    Значит, треугольник BOC — равнобедренный с основанием BC (по признаку равнобедренного треугольника).

    6) Так как CO=OA (по построению) и BO=CO (по доказанному), то CO=OA=BO, AB=OA+BO=2∙OA=2∙CO.

    Таким образом, точка O — середина гипотенузы AB, отрезок CO соединяет вершину треугольника с серединой противолежащей стороны, значит, CO — медиана, проведенная к гипотенузе, и она равна половине гипотенузы:

    Доказательство медиан прямоугольных треугольников

    Что и требовалось доказать.

    Этот способ может быть использован для доказательства свойства медианы прямоугольного треугольника в 7 классе, поскольку опирается только на материал, уже знакомый к моменту изучения данной темы.

    Еще один способ доказательства свойства медианы, проведенной к гипотенузе, рассмотрим в следующий раз.

    Видео:8. Медиана треугольника и её свойства.Скачать

    8. Медиана треугольника и её свойства.

    Определение и свойства медианы прямоугольного треугольника

    В данной статье мы рассмотрим определение и свойства медианы прямоугольного треугольника, проведенной к гипотенузе. Также разберем пример решения задачи для закрепления теоретического материала.

    Видео:Высота, биссектриса, медиана. 7 класс.Скачать

    Высота, биссектриса, медиана. 7 класс.

    Определение медианы прямоугольного треугольника

    Медиана – это отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.

    Доказательство медиан прямоугольных треугольников

    Прямоугольный треугольник – это треугольник, в котором один из углов является прямым (90°), а два остальных – острыми ( Свойства медианы прямоугольного треугольника

    Свойство 1

    Медиана (AD) в прямоугольном треугольнике, проведенная из вершины прямого угла (∠BAC) к гипотенузе (BC), равна половине гипотенузы.

    • BC = 2AD
    • AD = BD = DC

    Следствие: Если медиана равняется половине стороны, к которой она проведена, то данная сторона является гипотенузой, а треугольник – прямоугольным.

    Свойство 2

    Медиана, проведенная к гипотенузе прямоугольного треугольника, равняется половине квадратного корня из суммы квадратов катетов.

    Для нашего треугольника (см. рисунок выше):

    Доказательство медиан прямоугольных треугольников

    Это следует из теоремы Пифагора и Свойства 1.

    Свойство 3

    Медиана, опущенная на гипотенузу прямоугольного треугольника, равна радиусу описанной вокруг треугольника окружности.

    Т.е. BO – это одновременно и медиана, и радиус.

    Доказательство медиан прямоугольных треугольников

    Примечание: К прямоугольному треугольнику также применимы общие свойства медианы, независимо от вида треугольника.

    Видео:Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать

    Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)

    Пример задачи

    Длина медианы, проведенной в гипотенузе прямоугольного треугольника, составляет 10 см. А один из катетов равен 12 см. Найдите периметр треугольника.

    Решение
    Гипотенуза треугольника, как следует из Свойства 1, в два раза больше медианы. Т.е. она равняется: 10 см ⋅ 2 = 20 см.

    Воспользовавшись теоремой Пифагора находим длину второго катета (примем его за “b”, известный катет – за “a”, гипотенузу – за “с”):
    b 2 = с 2 – a 2 = 20 2 – 12 2 = 256.
    Следовательно, b = 16 см.

    Теперь мы знаем длины всех сторон и можем посчитать периметр фигуры:
    P = 12 см + 16 см + 20 см = 48 см.

    🔥 Видео

    Доказать, что медиана, проведенная к гипотенузе, равна половине гипотенузыСкачать

    Доказать, что медиана, проведенная к гипотенузе, равна половине гипотенузы

    Теорема о точке пересечения медиан треугольника. Доказательство. 8 класс.Скачать

    Теорема о точке пересечения медиан треугольника. Доказательство. 8 класс.

    Медиана прямоугольного треугольника— Геометрия ОГЭСкачать

    Медиана прямоугольного треугольника— Геометрия ОГЭ

    Простое и красивое доказательство свойства медианы прямоугольного треугольник #геометрия #математикаСкачать

    Простое и красивое доказательство свойства медианы прямоугольного треугольник #геометрия #математика

    Свойство медианы в прямоугольном треугольнике #shortsСкачать

    Свойство медианы в прямоугольном треугольнике #shorts

    Теорема "Свойство медианы прямоугольного треугольника"Скачать

    Теорема "Свойство медианы  прямоугольного треугольника"

    Медиана в прямоугольном треугольникеСкачать

    Медиана в прямоугольном треугольнике

    ОГЭ Задание 25 Свойство медиан прямоугольного треугольникаСкачать

    ОГЭ Задание 25 Свойство медиан прямоугольного треугольника

    Все факты о медиане треугольника для ЕГЭСкачать

    Все факты о медиане треугольника для ЕГЭ

    Геометрия, 9 класс | Метод удвоения медиан.Скачать

    Геометрия, 9 класс | Метод удвоения медиан.

    Свойство медианы прямоугольного треугольникаСкачать

    Свойство медианы прямоугольного треугольника

    Задание 24 Свойство медианы прямоугольного треугольникаСкачать

    Задание 24  Свойство медианы прямоугольного треугольника

    №404. Докажите, что медиана прямоугольного треугольника, проведенная к гипотенузеСкачать

    №404. Докажите, что медиана прямоугольного треугольника, проведенная к гипотенузе

    Медиана. Свойство медианы прямоугольного треугольника 1Скачать

    Медиана. Свойство медианы прямоугольного треугольника 1
    Поделиться или сохранить к себе: