Доказательство формулы площади треугольников

Площадь треугольника — определение и вычисление с примерами решения

Площадь треугольника:

Теорема (о площади треугольника). Площадь треугольника равна половине произведения его стороны на высоту, к ней проведенную.

Доказательство:

Пусть Доказательство формулы площади треугольников

Доказательство формулы площади треугольников

Доказательство формулы площади треугольников

1) Проведем через вершину Доказательство формулы площади треугольниковпрямую, параллельную Доказательство формулы площади треугольникова через вершину Доказательство формулы площади треугольников— прямую, параллельную Доказательство формулы площади треугольниковПолучим параллелограмм Доказательство формулы площади треугольников

2) Доказательство формулы площади треугольников(по трем сторонам). Поэтому

Доказательство формулы площади треугольниковоткуда Доказательство формулы площади треугольников

3) Так как Доказательство формулы площади треугольниковто Доказательство формулы площади треугольников

В общем виде формулу площади Доказательство формулы площади треугольниковтреугольника можно записать так:

Доказательство формулы площади треугольников

где Доказательство формулы площади треугольников— сторона треугольника, Доказательство формулы площади треугольников— высота, проведенная к ней.

Следствие 1. Площадь прямоугольного треугольника равна половине произведения катетов.

Следствие 2. Если сторона одного треугольника равна стороне другого треугольника, то площади таких треугольников относятся как их высоты, проведенные к этим сторонам.

Следствие 3. Если высота одного треугольника равна высоте другого треугольника, то площади этих треугольников относятся как стороны, к которым проведены эти высоты.

Пример:

Докажите, что если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, образующих этот угол.

Доказательство формулы площади треугольников

Доказательство:

Рассмотрим Доказательство формулы площади треугольникови Доказательство формулы площади треугольникову которых Доказательство формулы площади треугольниковПроведем высоты Доказательство формулы площади треугольникови Доказательство формулы площади треугольников(рис. 238).

Доказательство формулы площади треугольников

2) Доказательство формулы площади треугольников(по острому углу), поэтому Доказательство формулы площади треугольников

3) Имеем: Доказательство формулы площади треугольников

Пример:

Найдите площадь равностороннего треугольника, сторона которого равна Доказательство формулы площади треугольников

Решение:

Пусть Доказательство формулы площади треугольников— равносторонний со стороной Доказательство формулы площади треугольниковТогда Доказательство формулы площади треугольниковВ равностороннем треугольнике Доказательство формулы площади треугольниковгде Доказательство формулы площади треугольников— медиана. Но Доказательство формулы площади треугольников(§ 18, задача 4), поэтому Доказательство формулы площади треугольников

Следовательно, Доказательство формулы площади треугольников

Ответ. Доказательство формулы площади треугольников

Пример:

Стороны треугольника равны 8 см, 15 см и ^ 17 см. Найдите высоту треугольника, проведенную к его наибольшей стороне.

Решение:

Так как Доказательство формулы площади треугольников(т. е. 289 = 289), то по теореме, обратной теореме Пифагора, треугольник является прямоугольным. Прямой угол является противолежащим к стороне, равной 17 см.

Пусть на рис. 239 изображен прямоугольный треугольник, у которого Доказательство формулы площади треугольниковсм -гипотенуза, Доказательство формулы площади треугольникови Доказательство формулы площади треугольниковсм — катеты, Доказательство формулы площади треугольников— высота. Найдем Доказательство формулы площади треугольников

Доказательство формулы площади треугольников

Площадь этого треугольника можно найти

по формулам: Доказательство формулы площади треугольниковили Доказательство формулы площади треугольников

Тогда Доказательство формулы площади треугольниковто есть Доказательство формулы площади треугольниковоткуда Доказательство формулы площади треугольников

Таким образом, имеем: Доказательство формулы площади треугольников(см).

Ответ. Доказательство формулы площади треугольниковсм.

Содержание
  1. Теорема (формула площади треугольника)
  2. Доказательство формулы площади треугольников
  3. §2. Площадь треугольника. Метод площадей
  4. Как найти площадь треугольника
  5. Основные понятия
  6. Формула площади треугольника
  7. Общая формула
  8. 1. Площадь треугольника через основание и высоту
  9. 2. Площадь треугольника через две стороны и угол между ними
  10. 3. Площадь треугольника через описанную окружность и стороны
  11. 4. Площадь треугольника через вписанную окружность и стороны
  12. 5. Площадь треугольника по стороне и двум прилежащим углам
  13. 6. Формула Герона для вычисления площади треугольника
  14. Для прямоугольного треугольника
  15. Площадь треугольника с углом 90° по двум сторонам
  16. Площадь треугольника по гипотенузе и острому углу
  17. Площадь прямоугольного треугольника по катету и прилежащему углу
  18. Площадь треугольника через гипотенузу и радиус вписанной окружности
  19. Площадь треугольника по отрезкам, на которые делит вписанная окружность его гипотенузу
  20. Площадь прямоугольного треугольника по формуле Герона
  21. Для равнобедренного треугольника
  22. Вычисление площади через основание и высоту
  23. Поиск площади через боковые стороны и угол между ними
  24. Площадь равностороннего треугольника через радиус описанной окружности
  25. Площадь равностороннего треугольника через радиус вписанной окружности
  26. Площадь равностороннего треугольника через сторону
  27. Площадь равностороннего треугольника через высоту
  28. Таблица формул нахождения площади треугольника
  29. 🎬 Видео

Видео:✓ Новая формула площади треугольника | Ботай со мной #108 | Борис ТрушинСкачать

✓ Новая формула площади треугольника | Ботай со мной #108 | Борис Трушин

Теорема (формула площади треугольника)

Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне:

Доказательство формулы площади треугольников

где Доказательство формулы площади треугольников — сторона треугольника, Доказательство формулы площади треугольников — проведенная к ней высота.

Пусть Доказательство формулы площади треугольников— высота треугольника Доказательство формулы площади треугольников(рис. 148). Докажем, что Доказательство формулы площади треугольников

Доказательство формулы площади треугольников

Проведем через вершины Доказательство формулы площади треугольниковпрямые, параллельные сторонам треугольника, и обозначим точку их пересечения Доказательство формулы площади треугольниковТаким образом, мы «достроили» треугольник Доказательство формулы площади треугольниковдо параллелограмма Доказательство формулы площади треугольниковв котором отрезок Доказательство формулы площади треугольниковтакже является высотой, проведенной к стороне Доказательство формулы площади треугольников

По формуле площади параллелограмма Доказательство формулы площади треугольниковТреугольники Доказательство формулы площади треугольниковравны по трем сторонам (у них сторона Доказательство формулы площади треугольниковобщая, Доказательство формулы площади треугольниковкак противолежащие стороны параллелограмма). Эти треугольники имеют равные площади. Тогда площадь треугольника Доказательство формулы площади треугольниковсоставляет половину площади параллелограмма Доказательство формулы площади треугольниковчто и требовалось доказать.

Следствие 1

Площадь прямоугольного треугольника равна половине произведения его катетов:

Доказательство формулы площади треугольников

где Доказательство формулы площади треугольников— катеты прямоугольного треугольника.

Действительно, в прямоугольном треугольнике высота, проведенная к катету, совпадает с другим катетом.

Следствие 2

Площадь ромба равна половине произведения его диагоналей:

Доказательство формулы площади треугольников

где Доказательство формулы площади треугольников — диагонали ромба.

Действительно, диагонали делят ромб на четыре равных прямоугольных треугольника с катетами Доказательство формулы площади треугольников(рис. 149). Используя следствие 1, имеем:

Доказательство формулы площади треугольников

Доказательство формулы площади треугольников

Следствие 3

Площадь равностороннего треугольника со стороной Доказательство формулы площади треугольниковвычисляется по формуле

Доказательство формулы площади треугольников

Обоснуйте это следствие самостоятельно.

Опорная задача

Медиана делит треугольник на два равновеликих треугольника. Докажите.

Решение:

Пусть Доказательство формулы площади треугольников— медиана треугольника Доказательство формулы площади треугольников(рис. 150).

Доказательство формулы площади треугольников

Проведем высоту Доказательство формулы площади треугольниковтреугольника Доказательство формулы площади треугольниковЭтот отрезок является одновременно высотой треугольника Доказательство формулы площади треугольниковпроведенной к стороне Доказательство формулы площади треугольникови высотой треугольника Доказательство формулы площади треугольниковпроведенной к стороне Доказательство формулы площади треугольниковУчитывая равенство отрезков Доказательство формулы площади треугольниковимеем:

Доказательство формулы площади треугольников

Эта задача имеет интересные обобщения: если высоты двух треугольников равны, то отношение площадей этих треугольников равно отношению их оснований; если основания двух треугольников равны, то отношение площадей этих треугольников равно отношению их высот.

Докажите эти утверждения самостоятельно.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Соотношения между сторонами и углами произвольного треугольника
  • Окружность и круг
  • Описанные и вписанные окружности
  • Плоские и пространственные фигуры
  • Взаимное расположения прямых на плоскости
  • Треугольник
  • Решение треугольников
  • Треугольники и окружность

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Геометрия 9 класс (Урок№14 - Теорема о площади треугольника.)Скачать

Геометрия 9 класс (Урок№14 - Теорема о площади треугольника.)

Доказательство формулы площади треугольников

  • Доказательство формулы площади треугольников

Доказательство формулы площади треугольников

§2. Площадь треугольника. Метод площадей

В школьном курсе геометрии доказано несколько формул площади треугольника. Напомним их.

Пусть `A`, `B` и `C` — углы треугольника`ABC`; `a`, `b` и `c` — противолежащие этим углам стороны; `h_a`, `h_b` и `h_c` — высоты к этим сторонам; `r` — радиус вписанной окружности;`R` — радиус описанной окружности; `2p=(a+b+c)` — периметр треугольника; `S` — площадь треугольника

`S=1/2ah_a=1/2bh_b=1/2ch_c`,(1)
`S=1/2 ab sinC=1/2acsinB=1/2bcsinA`,(2)
`S=pr`,(3)
``S=sqrt(p(p-a)(p-b)(p-c))` — формула Герона,(4)
`S=(abc)/(4R)`.(5)

При вычислении площади из этих формул следует выбрать ту, которая в условиях конкретной задачи приводит к более простому решению.

Для примера, рассмотрим два треугольника:

Доказательство формулы площади треугольников

Доказательство формулы площади треугольников

`DeltaABC:` `AB=13`, `BC=14`, `AC=15`;

`DeltaKML:` `KL=sqrt(13)`, `LM=sqrt(14)`, `KM=sqrt(15)`;

Надо найти площадь и радиус описанной окружности.

Для треугольника `ABC` удобен ход решения такой:

`p=1/2(AB+BC+AC)=21`, по формуле Герона

`S_(ABC)=sqrt(21*6*7*8)= ul(84)` и по формуле (5)

Для треугольника `KLM` вычисленная по формуле Герона затруднительны, более простой путь — найти косинус, например, угла `M`. По теореме косинусов

тогда `sinM=sqrt(1-64/(210))=(sqrt(146))/(sqrt(14)*sqrt(15))` и по формуле (2):

тогда `R=(KL)/(2sinM)=ul((sqrt(13)*sqrt(14)*sqrt(15))/(2*sqrt(146)))=(sqrt(13)*sqrt7*sqrt(15))/(2*sqrt(73))` (точно также по формуле 5).

Сравнение площадей треугольников обычно опирается на одно из следующих утверждений:

$$ 2.^$$. Площади треугольников с одинаковой высотой относятся как длины соответствующих оснований. В частности, если точка `D` лежит на основании `AC` (рис. 6а), то

Доказательство формулы площади треугольниковДоказательство формулы площади треугольников

$$ 2.^$$. Площади треугольников с общим углом относятся как произведения сторон, заключающих этот угол (см. рис. 6б):

$$ 2.^$$. Площади подобных треугольников относятся как квадраты их

сходственных сторон, т. е. если `Delta ABC

DeltaA_1B_1C_1`, то `(S_(A_1B_1C_1))/(S_(ABC))=((A_1B_1)/(AB))^2`.

Все эти утверждения легко доказываются с использованием соответственно формул площади (1) и (2).

Обратим внимание на важное свойство медиан треугольника.

Три медианы треугольника разбивают его на `6` треугольников с общей вершиной и равными площадями.

Известно, что три медианы треугольника пересекаются в одной точке и делятся в отношении `2:1`, считая от вершины. Пусть `O` — точка пересечения медиан треугольника `DeltaABC` площади `S` (рис. 7а). Надо доказать, что площади всех шести треугольников с верш иной в точке `O`, составляющих треугольник `ABC`, равны между собой, т. е. равны `1/6S`.

Доказательство формулы площади треугольников

Докажем, например, для треугольника `BOM`, что `S_(BOM)=1/6S_(ABC)`.

Точка `M` — середина стороны `BC` (рис. 7б), по утверждению $$ 2.^$$ о сравнении площадей `S_(ABM)=1/2S`. Медиана `BN`, пересекая медиану `AM` в точке `O` (рис. 7в), делит её в отношении `AO:OM=2:1`, т. е. `OM=1/3AM`. По тому же утверждению $$ 2.^$$ площадь треугольника `BOM` составляет `1//3` площади треугольника `ABM`, т. е.

Дан треугольник `ABC`. Точка `D` лежит на стороне `AB`, `AD:DB=1:2`, точка `K` лежит на стороне `BC`, `BK:KC=3:2` (рис. 8а). Отрезки `AK` и `CD` пересекаются в точке `O`. Найти отношение площади четырёхугольника `DBKO` к площади треугольника `ABC`.

1. Обозначим `S_(ABC)=S`, `S_(DBKO)=sigma` и `S_(ADO)=a`. По утверждению $$ 2.^$$ имеем `S_(ABK)=a+sigma=3/5S` (так как `BK:BC=3:5`). Площадь `a` треугольника `ADO` найдём как часть площади треугольника `ADC`, зная, что `S_(ADC)=1/3S` (так как `AD:AB=1:3`).

Доказательство формулы площади треугольников

2. Через точку `D` проведём прямую `DL«||«AK`. По теореме о пересечении сторон угла параллельными прямыми (`/_ABC`, `DL«||«AK`) имеем `(BL)/(LK)=(BD)/(AD)`, откуда `LK=y`.

По той же теореме (`/_DCB`, `OK«||«DL`) получим `(DO)/(DC)=(LK)/(LC)`, `DO=1/3DC`.

3. Теперь находим `S_(ADO):S_(ADC)=DO:DC`, `a=1/3(1/3S)=1/9S`.

(Можно по теореме Менелая для треугольника `BCD` и секущей `CD:`

`(BK)/(KC)*(CO)/(OD)*(DA)/(AB)=1 iff 3/2*(CO)/(OD)*1/3=1 iff CO=2OD=>OD=1/3DC`).

Находим площадь: `sigma=3/5S-a=(3/5-1/9)S=22/45S`.

Найти площадь треугольника, две стороны которого равны `3` и `7`, а медиана к третьей стороне равна `4` (рис. 9).

Доказательство формулы площади треугольников

Пусть `AB=3`, `BC=7`, `AM=MC` и `BM=4`. Достроим треугольник `ABC` до параллелограмма, для этого на прямой `BM` отложим отрезок `MD=BM` и соединим точки: `A` с `D` и `C` с `D`. Противоположные стороны параллелограмма равны: `(DC=AB)` и равны площади треугольников `ABC` и `DBC` (общее основание `BC` и равные высоты из вершин `A` и `D`).

В треугольнике `DBC` известны все три стороны: `BC=7`, `DC=3`, `BD=2BM=8`.

Находим его площадь по формуле Герона: `p=9`, `S_(BCD)=6sqrt3`.

Значит и `S_(ABC)=6sqrt3`.

В решении этой задачи дополнительным построением получен треугольник, площадь которого равна площади заданного и легко вычисляется по данным задачи. Приведём ещё одну задачу, где сначала вычисляется площадь дополнительно построенной фигуры, а затем легко находится искомая площадь.

Найти площадь треугольника, если его медианы равны `3`, `4` и `5`.

Пусть `O` — точка пересечения медиан треугольника `ABC` (рис. 10) и пусть `m_a=AM=3`, `m_b=BN=4` и `m_c=CP=5`.

По свойству медиан `AO=2/3m_a`, `CO=2/3m_c` и `ON=1/3m_b`. В треугольнике `AOC` известны две стороны `AO` и `CO` и медиана третьей стороны `ON`. Площадь этого треугольника найдём как в предыдущей задаче.

Достроим треугольник `AOC` до параллелограмма `AOCD`, `S_(AOC)=S_(DOC)`, в треугольнике `DOC` известны три стороны:

`DO=2ON=2/3m_b`, `OC=2/3m_c`, `DC=AO=2/3m_a`.

Площадь треугольника `DOC` вычисляем по формуле Герона `S_1=S_(AOC)=S_(DOC)=8/3`. Сравним теперь площадь треугольника `ABC` (обозначим её `S`) с площадью треугольника `AOC`. Из теоремы 2 о медианах и площадях следует `S_(AOC)=S_(AON)+S_(NOC)=2*1/6S=1/3S`.

Доказательство формулы площади треугольников

В следующей задаче докажем лемму об отношении площади треугольника к площади другого треугольника, построенного из медиан первого.

Найти отношение площади `S` треугольника к площади `S_0` треугольника, составленного из медиан первого.

Рассмотрим рис. 10. В построенном треугольнике `OCD` стороны таковы: `OC=2/3m_c`, `OD=2/3m_b`, `CD=2/3m_a`. Очевидно, что треугольник со сторонами `m_a`, `m_b`, `m_c` подобен (по третьему признаку) треугольнику со сторонами `2/3m_a`, `2/3m_b`, `2/3m_c`.

Из решения предыдущей задачи следует, что `S_(OCD)=S_1=1/3S` (здесь `S` — площадь треугольника `ABC`). Кроме того, площади подобных треугольников относятся как квадраты сходственных сторон, поэтому `(S_1)/(S_0)=(2/3)^2`. Таким образом, имеем `S_0=9/4S_1=3/4S`, т. е.

`S_(m_am_bm_c)=3/4S_(abc)`.

Из рассуждений в решении Примера 9 следует, что всегда существует треугольник со сторонами, равными медианам данного треугольника, поскольку всегда существует подобный ему треугольник со сторонами `2/3m_a`, `2/3m_b`, `2/3m_c`. Кроме того, становится ясным план построения треугольника по трём отрезкам, равным его медианам: сначала строится треугольник `OCD` (см. рис. 10) со сторонами `2/3m_a`, `2/3m_b`, `2/3m_c`, затем точка `N` — середина отрезка `OD`, потом точка `A` (из `AN=NC`) и точка `B` (из `OB=OD`). Это построение осуществимо, если существует треугольник `OCD`, т. е. если существует треугольник со сторонами `m_a`, `m_b`, `m_c`. Итак, вывод: три отрезка могут быть медианами некоторого треугольника тогда и только тогда, когда из них можно составить треугольник.

Около окружности радиуса `sqrt3` описан треугольник. Найти его площадь, если одна из его сторон точкой касания делится на отрезки `9` и `5`.

Пусть `AP=9`, `PC=5` (рис. 11) и пусть `BM=x`. По свойству касательных `AM=AP`, `CN=CP` и `BN=BM`, поэтому стороны треугольника таковы: `AC=14`, `AB=9+x`, `BC=5+x`, тогда `p=14+x`. (Заметим, что `p=AC+BM`!). По формулам площади (3) и (4) имеем: `S=pr=(14+x)sqrt3` и `S=sqrt((14+x)x*5*9)`. Приравниваем правые части, возводим в квадрат, приводим подобные члены, получаем `x=1`. Вычисляем площадь треугольника:

Доказательство формулы площади треугольников

Приём, применённый в решении этой задачи, когда площадь фигуры выражается двумя различными способами, часто используется в задачах на доказательство.

Проведём два примера, в каждом выведем полезную формулу.

В треугольнике `ABC` угол `C` равен `varphi`, `AC=b`, `BC=a` (рис. 12). Доказать, что биссектриса `CD` равна `(2ab)/(a+b) cos varphi/2`.

Доказательство формулы площади треугольников

Обозначим `CD=x`. Очевидно, что `S_(ABC)=S_(ACD)+S_(DCB)`. По формуле (2) `S_(ABC)=1/2 ab sin varphi`, `S_(ACD)=1/2 bx sin varphi/2`, `S_(BDC)=1/2 ax sin varphi/2`. Таким образом, имеем: `1/2 ab sin varphi=1/2(a+b)x sin varphi/2`. Используем формулу синуса двойного угла `sin varphi=2sin varphi/2 cos varphi/2`, получим:

`x=(2ab)/(a+b)cos varphi/2`.

называется окружность, касающаяся одной из сторон треугольника и продолжений двух других сторон. Таких окружностей, очевидно, три (рис. 13). Их радиусы обычно обозначаются `r_a`, `r_b`, `r_c` в зависимости от того, какой стороны окружность касается.

Доказательство формулы площади треугольников

Вневписанная окружность касается стороны `a=BC` треугольника `ABC` (рис. 14). Доказать, что `S_(ABC)=r_a(p-a)`, где `2p=a+b+c`.

Доказательство формулы площади треугольников

Центр окружности `I_a` лежит на пересечении биссектрисы угла `A` и биссектрис внешних углов при вершинах `B` и `C`. Легко видеть, что если `D`, `F` и `E` — точки касания, то `I_aD=I_aF=I_aE=r_a`.

Считаем площадь `S_0` четырёхугольника `ABI_aC`:

`S_0=S_(ABC)+S_(BCI_a)` и `S_0=S_(ABI_a)+S_(ACI_a)`, откуда

Видео:9 класс, 12 урок, Теорема о площади треугольникаСкачать

9 класс, 12 урок, Теорема о площади треугольника

Как найти площадь треугольника

Доказательство формулы площади треугольников

О чем эта статья:

8 класс, 9 класс

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:8 класс, 14 урок, Площадь треугольникаСкачать

8 класс, 14 урок, Площадь треугольника

Основные понятия

Треугольник — это геометрическая фигура, которая получилась из трех отрезков. Их соединили тремя точками, не лежащими на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.

Площадь — это численная характеристика, которая дает нам информацию о размере части плоскости, ограниченной замкнутой геометрической фигурой.

Если значения заданы в разных единицах измерения длины, мы не сможем узнать, какая площадь треугольника получится. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.

Популярные единицы измерения площади:

  • квадратный миллиметр (мм 2 );
  • квадратный сантиметр (см 2 );
  • квадратный дециметр (дм 2 );
  • квадратный метр (м 2 );
  • квадратный километр (км 2 );
  • гектар (га).

Видео:Теорема о площади треугольника | Геометрия 7-9 класс #95 | ИнфоурокСкачать

Теорема о площади треугольника | Геометрия 7-9 класс #95 | Инфоурок

Формула площади треугольника

Для решения задач применяются различные формулы, в зависимости от известных исходных данных. Далее мы рассмотрим способы решения для всех типов треугольников, в том числе частные случаи для равносторонних, равнобедренных и прямоугольных фигур.

Быстро вычислить площадь треугольника поможет наш онлайн-калькулятор. Просто введите известные вам значения и получите ответ в метрах, сантиметрах или миллиметрах.

Научиться быстро щелкать задачки на нахождение площади треугольника помогут курсы по математике от Skysmart!

Видео:Секретные формулы площади треугольникаСкачать

Секретные формулы площади треугольника

Общая формула

1. Площадь треугольника через основание и высоту

, где — основание, — высота.

2. Площадь треугольника через две стороны и угол между ними

, где , — стороны, — угол между ними.

3. Площадь треугольника через описанную окружность и стороны

, где , , — стороны, — радиус описанной окружности.

4. Площадь треугольника через вписанную окружность и стороны

, где , , — стороны, — радиус вписанной окружности.

Если учитывать, что — это способ поиска полупериметра, то формулу можно записать следующим образом:

5. Площадь треугольника по стороне и двум прилежащим углам

, где — сторона, и — прилежащие углы.

6. Формула Герона для вычисления площади треугольника

Сначала необходимо подсчитать разность полупериметра и каждой его стороны. Потом найти произведение полученных чисел, умножить результат на полупериметр и найти корень из полученного числа.

, где , , — стороны, — полупериметр, который можно найти по формуле:

Видео:100. Теорема о площади треугольникаСкачать

100. Теорема о площади треугольника

Для прямоугольного треугольника

Площадь треугольника с углом 90° по двум сторонам

Площадь треугольника по гипотенузе и острому углу

, где — гипотенуза, — любой из прилегающих острых углов.

Гипотенузой принято называть сторону, которая лежит напротив прямого угла.

Площадь прямоугольного треугольника по катету и прилежащему углу

, где — катет, — прилежащий угол.

Катетом принято называть одну из двух сторон, образующих прямой угол.

Площадь треугольника через гипотенузу и радиус вписанной окружности

, где — гипотенуза, — радиус вписанной окружности.

Площадь треугольника по отрезкам, на которые делит вписанная окружность его гипотенузу

, где , — части гипотенузы.

Площадь прямоугольного треугольника по формуле Герона

, где , — катеты, — полупериметр, который можно найти по формуле:

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Для равнобедренного треугольника

Вычисление площади через основание и высоту

, где — основание, — высота, проведенная к основанию.

Поиск площади через боковые стороны и угол между ними

, где — боковая сторона, — угол между боковыми сторонами.

Площадь равностороннего треугольника через радиус описанной окружности

, где — радиус описанной окружности.

Площадь равностороннего треугольника через радиус вписанной окружности

, где — радиус вписанной окружности.

Площадь равностороннего треугольника через сторону

Площадь равностороннего треугольника через высоту

Видео:Вывод формулы площади треугольникаСкачать

Вывод формулы площади треугольника

Таблица формул нахождения площади треугольника

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу, использовать как закладку в тетрадке или учебнике и обращаться к ней по необходимости.

🎬 Видео

Площадь по теореме Герона #математика #площадь #треугольник #герона #егэ #огэ #найтиплощадь #теоремаСкачать

Площадь по теореме Герона #математика #площадь #треугольник #герона #егэ #огэ #найтиплощадь #теорема

Геометрия 9 класс : Теорема о площади треугольникаСкачать

Геометрия 9 класс : Теорема о площади треугольника

11 класс, 47 урок, Формулы площади треугольникаСкачать

11 класс, 47 урок, Формулы площади треугольника

8 класс, 18 урок, Формула ГеронаСкачать

8 класс, 18 урок, Формула Герона

Как найти площадь треугольника? #треугольник #математика #егэ #shorts #подготовкакегэ #огэ #площадьСкачать

Как найти площадь треугольника? #треугольник #математика #егэ #shorts #подготовкакегэ #огэ #площадь

Геометрия 8. Урок 14 - Площадь треугольников. Формулы и задачи.Скачать

Геометрия 8. Урок 14 - Площадь треугольников. Формулы и задачи.

Площади треугольников с равным углом.Скачать

Площади треугольников с равным углом.

Найдите площадь треугольника на рисунке ★ Два способа решенияСкачать

Найдите площадь треугольника на рисунке ★ Два способа решения

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Площадь треугольника. Формула площади. Геометрия 8 класс.Скачать

Площадь треугольника. Формула площади. Геометрия 8 класс.

5 формул площади треугольникаСкачать

5 формул площади треугольника
Поделиться или сохранить к себе: