Доказательства равенства треугольников 7 класс

Треугольники. Признаки равенства треугольников

Треугольник − это геометрическая фигура, образованная соединением отрезками трех, не лежащих на одной прямой точек .

Эти точки называются вершинами треугольника. Отрезки, соединяющие эти точки называются сторонами треугольника.

Доказательства равенства треугольников 7 класс

Треугольник обозначается знаком ⊿. Например треугольник ABC обозначается так: ⊿ABC. Этот же треугольник можно обозначать так: ⊿BAC, ⊿CBA и т.д.

Углы треугольника обозначают так ∠BAC, ∠ABC, ∠BCA. Эти же углы коротко обозначают также ∠A, ∠B, ∠C, соответственно. Углы треугольника принято также обозначать греческими буквами α, β, γ и т.д. Стороны тркеугольника обозначают так AB, BC, AC. Принято также стороны обозначать одной строчной буквой, причем сторона напротив угла A ,обозначается буквой a, сторона напротив угла Bb, сторона напротив угла Cc. Сумма трех сторон треугольника называется периметром треугольника.

Как известно, две треугольники называются равными, если при наложении друг на друга их можно совместить. На Рис.2 представлены два треугольника ABC и A1B1C1. Треугольник ABC можно наложить на треугольник A1B1C1 так, чтобы вершины и стороны этих треугольников попарно совместились. Очевидно, что при этом совместятся и соответствующие углы.

Доказательства равенства треугольников 7 класс

Вышеизложенное можно сформулировать так:

Если два треугольника равны, то элементы (стороны и углы) одного треугольника соответственно равны элементам другого треугольника. Равенство треугольников ABC и A1B1C1 обозначается так:

Доказательства равенства треугольников 7 класс
Содержание
  1. Первый признак равенства треугольников
  2. Второй признак равенства треугольников
  3. Третий признак равенства треугольников
  4. Задачи и решения
  5. Признаки равенства треугольников — определение и вычисление с примерами решения
  6. Определения
  7. Равные треугольники
  8. Виды треугольников
  9. Первый и второй признаки равенства треугольников
  10. Пример №1
  11. Пример №2
  12. Пример №3
  13. Пример №4
  14. Высота, медиана и биссектриса треугольника
  15. Равнобедренный треугольник
  16. Пример №5
  17. Пример №6
  18. Признаки равнобедренного треугольника
  19. Пример №7
  20. Пример №8
  21. Третий признак равенства треугольников
  22. Пример №9
  23. Пример №10
  24. Пример №11
  25. Серединный перпендикуляр к отрезку
  26. Пример №12
  27. Пример №13 (1-я замечательная точка треугольника).
  28. Признаки равенства треугольников
  29. Первый признак равенства треугольников
  30. Второй признак равенства треугольников
  31. Третий признак равенства треугольников
  32. 📺 Видео

Видео:Признаки равенства треугольников. 7 класс.Скачать

Признаки равенства треугольников. 7 класс.

Первый признак равенства треугольников

Теорема 1. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то эти треугольники равны.

Доказательства равенства треугольников 7 класс

Доказательство. Рассмотрим треугольники ABC и A1B1C1 (Рис.3). Пусть AB=A1B1, =A1С1 и ∠A=∠A1. Докажем, что Доказательства равенства треугольников 7 класс.

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Второй признак равенства треугольников

Теорема 2. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то эти треугольники равны.

Доказательства равенства треугольников 7 класс

Доказательство. Рассмотрим треугольники ABC и A1B1С1 (Рис.4). Пусть AB=A1B1, ∠A=∠A1, ∠B=∠B1. Докажем, что Доказательства равенства треугольников 7 класс.

Видео:Первый признак равенства треугольников. 7 класс.Скачать

Первый признак равенства треугольников. 7 класс.

Третий признак равенства треугольников

Теорема 3. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то эти треугольники равны.

Доказательства равенства треугольников 7 класс

Доказательство. Рассмотрим треугольники ABC и A1B1С1. Пусть AB=A1B1, AC=A1C1 и BC=B1C1. Докажем, что Доказательства равенства треугольников 7 класс. Приложим треугольник ABC к треугольнику A1B1С1 так, чтобы вершина A совмещалась с вершиной A1, вершина B совмещалась с вершиной B1, а вершины С и С1 находились по разные стороны от прямой A1B1.

Доказательства равенства треугольников 7 класс

Возможны три варианта: луч CC1 проходит внутри угла ACB(Рис.6); луч CC1 совпадает с одной из сторон угла ACB (Рис.7); луч CC1 проходит вне угла ACB(Рис.8). Рассмотрим эти три случая по отдельности.

Доказательства равенства треугольников 7 классДоказательства равенства треугольников 7 класс.

Имеем AC=A1C1, BC=B1C1 ∠ACB=∠A1C1B1 и по первому признаку равенства треугольников Доказательства равенства треугольников 7 класс. Теорема доказана.

Доказательства равенства треугольников 7 класс

Вариант 2 (Рис.7). Так как по условию теоремы AC=A1C1 и BC=B1C1, то треугольник BСС1 равнобедренный. Тогда ∠1=∠2. Имеем: AC=A1C1, BC=B1C1, ∠1=∠2 и по первому признаку равенства треугольников Доказательства равенства треугольников 7 класс. Теорема доказана.

Доказательства равенства треугольников 7 класс

Вариант 3 (Рис.8). Так как по условию теоремы AC=A1C1 и BC=B1C1, то треугольники AСС1 и BСС1 равнобедренные. Тогда ∠1=∠2 и Доказательства равенства треугольников 7 класси, следовательно:

Доказательства равенства треугольников 7 классДоказательства равенства треугольников 7 класс.

Имеем AC=A1C1, BC=B1C1 Доказательства равенства треугольников 7 класси по первому признаку равенства треугольников Доказательства равенства треугольников 7 класс. Теорема доказана.

Видео:Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)Скачать

Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)

Задачи и решения

Задача 1. На сторонах угла CAD отмечены точки B и E так, что точка B лежит на отрезке AC, а точка E − на отрезке AD, причем AC=AD и AB=AE. Докажите, что ∠CBD=∠DEC (Рис.9).

Доказательства равенства треугольников 7 класс

Доказательство. AC=AD, AE=AB, ∠CAD общий для треугольников CAE и DAB. Тогда, по первому признаку равенства треугольников (теорема 1) ⊿ACE=⊿ADB. Следовательно ∠DBA=∠AEC. Поскольку углы CBD и DBA смежные, то CBD=180°−∠DBA. Аналогично CED=180°-∠AEC. То есть ∠CBD=∠DEC. Конец доказательства .

Задача 2. По данным рисунка рис.10 докажите, что OP=OT, ∠P=∠T

Доказательства равенства треугольников 7 класс

Доказательство. OC=OB, ∠TCO=∠PBO=90°. Углы TOC и POB вертикальные (следовательно равны) тогда, повторому признаку равенства треугольников (теорема 2), ⊿TCO=⊿PBO. Конец доказательства .

Видео:Геометрия. 7 класс. Теоремы. Т3. Первый признак равенства треугольников.Скачать

Геометрия. 7 класс. Теоремы. Т3. Первый признак равенства треугольников.

Признаки равенства треугольников — определение и вычисление с примерами решения

Содержание:

Если на плоскости отметить три точки А, В и С, не лежащие на одной прямой, и соединить их отрезками, то получим треугольник ABC. Можно сказать, что треугольник — это трехзвенная замкнутая ломаная. Обозначают: Доказательства равенства треугольников 7 класс

Видео:7 класс, 15 урок, Первый признак равенства треугольниковСкачать

7 класс, 15 урок, Первый признак равенства треугольников

Определения

Доказательства равенства треугольников 7 класс

Определение. Треугольником называется трехзвенная замкнутая ломаная вместе с частью плоскости, которую она ограничивает.

Если соединить концами три деревянных планки, то получится треугольник, который нельзя подвергнуть деформации — он будет сохранять свою форму. Тогда как четырехугольник может менять свою форму (рис. 102)? Это свойство «жесткости» треугольника широко используется в технике, производстве, строительстве.
Доказательства равенства треугольников 7 класс

Равные треугольники

Равные треугольники можно совместить наложением так, что соответственно совпадут все три стороны и все три угла (рис. 103). В совпавших, то есть в равных треугольниках, против равных сторон лежат равные углы, а против равных углов — равные стороны. Если Доказательства равенства треугольников 7 классто Доказательства равенства треугольников 7 класса если Доказательства равенства треугольников 7 классто Доказательства равенства треугольников 7 класс

Доказательства равенства треугольников 7 класс

Для совмещения равных отрезков достаточно совпадения их концов, а для совмещения равных треугольников — совпадения их вершин.

Виды треугольников

Если у треугольника все три стороны имеют разную длину, то такой треугольник называется разносторонним.

Треугольник, у которого две стороны равны, называется равнобедренным. Его равные стороны называются боковыми сторонами, третья сторона — основанием, вершина, противолежащая основанию, — вершиной равнобедренного треугольника (рис. 104).

Доказательства равенства треугольников 7 класс

Если у треугольника равны все три стороны, то он называется равносторонним (рис. 105). Равносторонний треугольник является также и равнобедренным, где любую пару сторон можно принять за боковые стороны.

Доказательства равенства треугольников 7 класс

По величине углов треугольники делятся на остроугольные (у них все углы острые), тупоугольные (есть тупой угол) и прямоугольные (есть прямой угол) (рис. 106).

Доказательства равенства треугольников 7 класс

Треугольником называется трехзвенная замкнутая ломаная вместе с частью плоскости, которую она ограничивает.

Периметром треугольника (многоугольника) называется сумма длин его сторон.

Равными треугольниками называются треугольники, которые можно совместить наложением.

Равнобедренным треугольником называется треугольник, у которого две стороны равны.

Равносторонним треугольником называется треугольник, у которого все стороны равны.

Свойство равных треугольников. В равных треугольниках против равных сторон лежат равные углы, а против равных углов — равные стороны.

Замечание. Называя или записывая равные треугольники, стараются соблюдать последовательность соответствующих вершин. Во многих случаях это удобно. Однако делать это необязательно. Обе записи: Доказательства равенства треугольников 7 классАВС =Доказательства равенства треугольников 7 классKNM и Доказательства равенства треугольников 7 классBAC =Доказательства равенства треугольников 7 классKNM — правильные. Иногда соответствующие вершины равных треугольников обозначают одними и теми же буквами, добавляя к буквам одного из треугольников индекс: Доказательства равенства треугольников 7 классАВС = = Доказательства равенства треугольников 7 классА1В1С1. При такой записи имеют в виду, что соответствующими являются вершины А и А1, В и В1, С и С1.

Первый и второй признаки равенства треугольников

При выяснении равны ли треугольники нет необходимости устанавливать равенство всех их соответствующих элементов путем наложения или измерения. Следующие две теоремы гарантируют равенство треугольников при равенстве некоторых сторон и углов.

Теорема (первый признак равенства треугольников). Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Дано: АВ =А1В1, АС =А1С1, Доказательства равенства треугольников 7 классA = Доказательства равенства треугольников 7 классA1 (рис. 108).

Доказательства равенства треугольников 7 класс

Доказать: Доказательства равенства треугольников 7 классАВС = Доказательства равенства треугольников 7 классА1В1С1.

Доказательство:

Наложим треугольник ABC на треугольник А1В1С1 так, чтобы совпали равные углы А и А1, луч АВ совпал с лучом А1В1, а луч АС совпал с лучом А1С1. Так как отрезки АВ и А1В1 равны, то они совпадут при наложении, и вершина В совпадет с вершиной В1. Аналогично совпадут равные отрезки АС и A1C1, вершина С совпадет с вершиной C1. Треугольники совпадут полностью, так как совпадут их вершины. Таким образом, Доказательства равенства треугольников 7 классАВС = Доказательства равенства треугольников 7 классА1В1С1. Теорема доказана.

Говорят, что две стороны и угол между ними задают треугольник однозначно.

Теорема (второй признак равенства треугольников). Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

AC =А1С1, Доказательства равенства треугольников 7 классA = Доказательства равенства треугольников 7 классА1, Доказательства равенства треугольников 7 классC = Доказательства равенства треугольников 7 классС1 (рис. 109).

Доказать: Доказательства равенства треугольников 7 классАВС = Доказательства равенства треугольников 7 классА1В1С1.

Доказательство:

Наложим треугольник ABC на треугольник А1В1С1 так, чтобы совпали равные стороны АС и А1С1, угол А совпал с равным углом А1, а угол С — с равным углом Сх. Тогда луч АВ совпадет с лучом А1В1, луч СВ — с лучом С1В1, а вершина В совпадет с вершиной В1 (точка В будет принадлежать и прямой
А1В1, и прямой С1В1, и поэтому совпадет с точкой их пересечения В1). Треугольники совпадут полностью, так как совпадут их вершины. Таким образом, Доказательства равенства треугольников 7 классАВС = Доказательства равенства треугольников 7 классА1В1С1. Теорема доказана.

Говорят, что сторона и два прилежащих к ней угла задают треугольник однозначно

Пример №1

Отрезки АВ и CD пересекаются в их серединах. Доказать, что расстояния между точками А и С, В и D равны.

Доказательства равенства треугольников 7 класс

Доказательство:

Пусть О — точка пересечения отрезков АВ и CD (рис. 110). Рассмотрим Доказательства равенства треугольников 7 классАОС и Доказательства равенства треугольников 7 классBOD. У них АО = ОВ, CO = OD по условию, Доказательства равенства треугольников 7 классAOC = Доказательства равенства треугольников 7 классBOD как вертикальные. Треугольники равны по двум сторонам и углу между ними, то есть по 1-му признаку равенства треугольников. Стороны АС и BD равны, так как в равных треугольниках против равных углов лежат равные стороны.

Возможно краткое оформление решения задачи.Доказательства равенства треугольников 7 класс

Пример №2

Дана простая замкнутая ломаная ABCD, у которой АВ =AD = 6 см, CD -4 см и луч АС является биссектрисой угла BAD. Найти длину ломаной ABCD.

Решение:

У треугольников ABC и ADC сторона АС — общая (рис. 111), AB=AD по условию, Доказательства равенства треугольников 7 классBAC =Доказательства равенства треугольников 7 классDAC, так как АС — биссектриса угла BAD.

Доказательства равенства треугольников 7 класс

Эти треугольники равны по 1-му признаку равенства треугольников.

Отсюда ВС = CD как соответствующие (соответственные) стороны в двух равных треугольниках.

Длина ломаной ABCD: Доказательства равенства треугольников 7 класс

Пример №3

На сторонах угла В отложены отрезки: ВА = ВС, КА-МС (рис. 112). Доказать, что Доказательства равенства треугольников 7 классA = Доказательства равенства треугольников 7 классС.

Доказательства равенства треугольников 7 класс

Доказательство:

Рассмотрим треугольники АВМ и СВК. У них Доказательства равенства треугольников 7 классB — общий, АВ = СВ по условию, MB=KB, так как MB = СВ — СМ, KB =АВ -АК (если от равных отрезков отнять равные, получим равные отрезки). Треугольники АВМ и СВК равны по двум сторонам и углу между ними. Из равенства треугольников следует, что Доказательства равенства треугольников 7 классA = Доказательства равенства треугольников 7 классC (в равных треугольниках против равных сторон лежат равные углы).

Пример №4

На рисунке 113 Доказательства равенства треугольников 7 классBAD = Доказательства равенства треугольников 7 классCDA, Доказательства равенства треугольников 7 классCAD = Доказательства равенства треугольников 7 классBDA. Доказать равенство треугольников АОВ и DOC.

Доказательства равенства треугольников 7 класс

Доказательство:

Так как Доказательства равенства треугольников 7 классABD =Доказательства равенства треугольников 7 классDCA по 2-му признаку равенства треугольников (сторона AD — общая, углы при стороне AD соответственно равны по условию), то АВ = DC, Доказательства равенства треугольников 7 классB =Доказательства равенства треугольников 7 классC.

Так как Доказательства равенства треугольников 7 классBAO = Доказательства равенства треугольников 7 классBAD — Доказательства равенства треугольников 7 классCAD, Доказательства равенства треугольников 7 классCDO = Доказательства равенства треугольников 7 классCDA — Доказательства равенства треугольников 7 классBDA, тo Доказательства равенства треугольников 7 классBAO =Доказательства равенства треугольников 7 классCDO (если от равных углов отнять равные, получим равные углы). Тогда Доказательства равенства треугольников 7 классАОВ = Доказательства равенства треугольников 7 классDOC по 2-му признаку равенства треугольников.

Высота, медиана и биссектриса треугольника

У треугольника, помимо трех сторон, трех вершин и трех углов, имеются также и другие элементы — высота, медиана и биссектриса.
Доказательства равенства треугольников 7 класс

Определение. Высотой треугольника (рис. 118, а) называется перпендикуляр, опущенный из вершины треугольника на противоположную сторону или на ее продолжение (отрезок ВН).

Определение. Медианой треугольника (рис. 118, б) называется отрезок, который соединяет вершину треугольника с серединой противоположной стороны (отрезок ВМ).

Определение. Биссектрисой треугольника (рис. 118, в) называется отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой пересечения биссектрисы с противоположной стороной (отрезок ВК).

В равных треугольниках равны соответствующие высоты, медианы и биссектрисы.

Если треугольник не равнобедренный, то высота, медиана и биссектриса, проведенные из одной вершины треугольника, не совпадают (рис. 119).

Доказательства равенства треугольников 7 класс

Поскольку у треугольника три вершины, то у него и три высоты, три медианы, три биссектрисы. Позже мы докажем, что высоты треугольника (или их продолжения) пересекаются в одной точке. Это же касается медиан треугольника (рис. 120) и его биссектрис (рис. 121).

Доказательства равенства треугольников 7 класс

Если треугольник остроугольный (рис. 122, а), то точка пересечения его высот находится внутри треугольника ABC. Если треугольник тупоугольный или прямоугольный (рис. 122, б, в), то продолжения высот пересекаются соответственно вне треугольника или в вершине прямого угла.

Доказательства равенства треугольников 7 класс

Точки пересечения высот, биссектрис и медиан называются замечательными точками треугольника.

Геометрия 3D

Тетраэдром или треугольной пирамидой называется многогранник, у которого все четыре грани — треугольники. Любую его грань можно принять за основание, а противолежащую вершину — за вершину пирамиды. Если точка S — вершина, а треугольник ABC — основание пирамиды, то перпендикуляр SH к плоскости ABC является высотой тетраэдра (рис. 124).
Доказательства равенства треугольников 7 класс

Равнобедренный треугольник

Определение. Треугольник называется равнобедренным, если у него две стороны равны.

Равные стороны называются боковыми сторонами, третья сторона — основанием, вершина, противолежащая основанию, — вершиной равнобедренного треугольника.

Рассмотрим некоторые свойства равнобедренного треугольника и один из его признаков.

Теорема (о свойстве углов при основании). В равнобедренном треугольнике углы при основании равны.

Дано: Доказательства равенства треугольников 7 класс(рис. 126).

Доказательства равенства треугольников 7 класс

Доказать: Доказательства равенства треугольников 7 класс

Доказательство:

Проведем биссектрису ВК треугольника ABC. Треугольники АВК и СВК равны по двум сторонам и углу между ними: сторона ВК — общая, АВ = ВС по условию, углы АВК и СВК равны по определению биссектрисы. Из равенства этих треугольников следует, что Доказательства равенства треугольников 7 классТеорема доказана.

Теорема (о свойстве биссектрисы равнобедренного треугольника).

В равнобедренном треугольнике биссектриса, проведенная к основанию, является его медианой и высотой.

Дано: Доказательства равенства треугольников 7 класс— биссектриса (рис. 127).

Доказательства равенства треугольников 7 класс

Доказать: ВК — медиана и высота.

Доказательство:

Треугольники АВК и СВК равны по двум сторонам и углу между ними (см. предыдущую теорему). Из равенства треугольников следует, что АК=КС и Доказательства равенства треугольников 7 класс1 =Доказательства равенства треугольников 7 класс2. Так как углы 1 и 2 смежные, то их сумма равна 180°, поэтому Доказательства равенства треугольников 7 классСледовательно, ВК — медиана и высота. Теорема доказана.

Замечание. Поскольку из вершины треугольника можно провести только одну биссектрису, одну высоту и одну медиану, то теорему можно сформулировать так: «Биссектриса, высота и медиана равнобедренного треугольника, проведенные из вершины к основанию, совпадают». То есть если по условию задачи дана высота равнобедренного треугольника, проведенная к основанию, то согласно данной теореме она является биссектрисой и медианой. Аналогично, если дана медиана равнобедренного треугольника, проведенная к основанию, то она является высотой и биссектрисой.

Теорема (признак равнобедренного треугольника). Если в треугольнике два угла равны, то он равнобедренный.

Дано: Доказательства равенства треугольников 7 класс

Доказать:Доказательства равенства треугольников 7 класс

Доказательство:

Мысленно перевернем треугольник ABC обратной стороной (рис. 128) и наложим перевернутый треугольник на треугольник ABC так, чтобы их стороны АС совпали, угол С совпал с углом А, угол А совпал с углом С.

Доказательства равенства треугольников 7 класс

Тогда перевернутый треугольник совместится с данным, и сторона ВС совместится со стороной АВ. Следовательно, АВ = ВС, т. е. Доказательства равенства треугольников 7 классАВС — равнобедренный. Теорема доказана.

Доказанный признак равнобедренного треугольника является теоремой, обратной теореме о свойстве углов при основании равнобедренного треугольника (рис. 129).

Доказательства равенства треугольников 7 класс

Напомним, что любая теорема состоит из условия — того, что дано, и заключения — того, что нужно доказать. У теоремы, обратной данной, условием является заключение данной теоремы, а заключением — условие данной.

Пример №5

Доказать, что в равнобедренном треугольнике биссектрисы, проведенные к боковым сторонам, равны между собой.

Доказательство:

Пусть в Доказательства равенства треугольников 7 классАВС АВ =ВС, АК и СМ — биссектрисы (рис. 130). Нужно доказать, что АК = СМ. Рассмотрим Доказательства равенства треугольников 7 классАКВ и Доказательства равенства треугольников 7 классСМВ. У них Доказательства равенства треугольников 7 классB — общий, АВ = ВС по условию, Доказательства равенства треугольников 7 классBAK = Доказательства равенства треугольников 7 классBCM как половины равных углов А и С при основании равнобедренного треугольника. Тогда Доказательства равенства треугольников 7 классАКВ = Доказательства равенства треугольников 7 классСМВ по 2-му признаку равенства треугольников, откуда АК = СМ. Что и требовалось доказать.

Замечание. Вторым способом доказательства будет рассмотрениеДоказательства равенства треугольников 7 классАКС иДоказательства равенства треугольников 7 классСМА и доказательство их равенства.

Пример №6

Доказать, что перпендикуляр, проведенный из центра окружности к хорде, делит эту хорду пополам.

Доказательство:

Пусть О — центр окружности, АВ — хорда, ОН — перпендикуляр к хорде АВ (рис. 131).

Доказательства равенства треугольников 7 класс

Отрезки OA и ОВ равны как радиусы. Поэтому треугольник АОВ — равнобедренный, а ОН — его высота, проведенная к основанию. Мы знаем, что высота равнобедренного треугольника, проведенная к основанию, является и медианой. А медиана делит сторону треугольника пополам, то есть АН = НВ. Что и требовалось доказать.

Признаки равнобедренного треугольника

Вы уже знаете один признак равнобедренного треугольника: «Если в треугольнике два угла равны, то треугольник равнобедренный». Докажем еще три признака равнобедренного треугольника, связанных с его высотой, медианой и биссектрисой.

Теорема. Если в треугольнике высота является медианой, то треугольник равнобедренный.

Дано: ВН — высота и медиана Доказательства равенства треугольников 7 классАВС (рис. 136).

Доказательства равенства треугольников 7 класс

Доказательство:

Рассмотрим Доказательства равенства треугольников 7 классАВН и Доказательства равенства треугольников 7 классСВН. У них сторона ВН — общая, Доказательства равенства треугольников 7 класс Доказательства равенства треугольников 7 класс(так как ВН — высота), АН = СН (так как ВН — медиана). Треугольники АВН и СВН равны по двум сторонам и углу между ними. Из равенства треугольников следует равенство соответствующих сторон АВ и ВС. Теорема доказана.

Теорема. Если в треугольнике высота является биссектрисой, то треугольник равнобедренный.

Дано: ВН — высота и биссектриса Доказательства равенства треугольников 7 классАВС.

Доказать: АВ = ВС (рис. 137).

Доказательства равенства треугольников 7 класс

Доказательство:

Рассмотрим Доказательства равенства треугольников 7 классАВН и Доказательства равенства треугольников 7 классСВН. У них сторона ВН — общая, Доказательства равенства треугольников 7 класс Доказательства равенства треугольников 7 класс(так как ВН — высота), Доказательства равенства треугольников 7 класс Доказательства равенства треугольников 7 класс(так как ВН — биссектриса). Треугольники АВН и СВН равны по стороне и двум прилежащим к ней углам. Из равенства треугольников следует равенство соответствующих сторон АВ и ВС. Теорема доказана.

Теорема. Если в треугольнике медиана является биссектрисой, то треугольник равнобедренный.

Дано: ВМ — медиана и биссектриса Доказательства равенства треугольников 7 классАВС.

Доказать: АВ = ВС (рис. 138).

Доказательство:

Продлим медиану ВМ на ее длину за точку М. Получим МВХ = ВМ. Треугольники АМВ1 и СМВ равны по двум сторонам и углу между ними (МВ1 = ВМ по построению; AM = МС, так как ВМ — медиана; Доказательства равенства треугольников 7 классAMВ1 =Доказательства равенства треугольников 7 классCMB как вертикальные). Из равенства этих треугольников следует, что АВ1=ВС и Доказательства равенства треугольников 7 классAB1M = =Доказательства равенства треугольников 7 классCBM. Но ZCBM = ZABM, так как ВМ — биссектриса по условию. Тогда Доказательства равенства треугольников 7 классAB1B = Доказательства равенства треугольников 7 классABB1 и Доказательства равенства треугольников 7 классАВВ1 — равнобедренный по признаку равнобедренного треугольника. Следовательно, АВ=АВ1. А так как АВ1=ВС, то АВ = ВС. Теорема доказана.

Замечание. Прием продления (продолжения) медианы часто используется при решении геометрических задач.

Пример №7

В треугольнике ABC с периметром 54 см медиана АК перпендикулярна стороне ВС, а высота ВМ составляет равные углы со сторонами ВА и ВС. Найти стороны треугольника ABC.

Решение:

Так как медиана АК является и высотой, то Доказательства равенства треугольников 7 классАВС — равнобедренный с основанием ВС и АВ =АС. Так как высота ВМ является и биссектрисой, то Доказательства равенства треугольников 7 классАВС — равнобедренный с основанием АС и АВ = ВС. Тогда Доказательства равенства треугольников 7 классАВС — равносторонний, Доказательства равенства треугольников 7 класс Доказательства равенства треугольников 7 класс(см).

Пример №8

Биссектриса АК треугольника АБС делит сторону ВС пополам. Периметр треугольника ABC равен 36 см, периметр треугольника АКС равен 30 см. Найти длину биссектрисы АК.

Решение:

Из условия следует, что биссектриса АК является и медианой Доказательства равенства треугольников 7 классАВС (рис. 139).

Доказательства равенства треугольников 7 класс

Тогда Доказательства равенства треугольников 7 классАВС — равнобедренный по признаку равнобедренного треугольника и АВ=АС. Так как ВК = СК, то сумма отрезков АС и СК равна полупериметру Доказательства равенства треугольников 7 классАВС, то есть 18 см. По условию периметр Доказательства равенства треугольников 7 классАКС равен 30 см, поэтому АК = 30 — 18 = 12 (см).

Геометрия 3D

У правильной треугольной пирамиды DABC в основании лежит равносторонний треугольник ABC, а боковые грани ADB, ADC, BDC — равные равнобедренные треугольники с общей вершиной D (рис. 142).

Доказательства равенства треугольников 7 класс

У правильной четырехугольной пирамиды в основании лежит квадрат MNKE, а боковые грани МРЕ, MPN, NPK, ЕРК — равные равнобедренные треугольники с общей вершиной Р (рис. 143).

Доказательства равенства треугольников 7 класс

Третий признак равенства треугольников

Вам уже известны два признака равенства треугольников. Рассмотрим еще один.

Теорема (третий признак равенства треугольников). Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Доказательства равенства треугольников 7 класс

Доказать: Доказательства равенства треугольников 7 классАВС = Доказательства равенства треугольников 7 классА1В1С1.

Доказательство:

Приложим треугольник А1В1С1 к треугольнику ABC так, чтобы у них совместились равные стороны А1С1 и АС, а вершины В1 и В оказались в разных полуплоскостях относительно прямой АС. Треугольник А1В1С1 займет положение треугольника АВ2С. Проведем отрезок ВВ2. Так как АВ2=АВ и В2С = ВС, то треугольники АВВ2 и СВВ2 — равнобедренные. Откуда Доказательства равенства треугольников 7 классl =Доказательства равенства треугольников 7 класс2 и Доказательства равенства треугольников 7 класс3 =Доказательства равенства треугольников 7 класс4 (как углы при основании равнобедренного треугольника). Тогда Доказательства равенства треугольников 7 классABC =Доказательства равенства треугольников 7 классAB2C, и треугольники ABC и АВ2С равны по двум сторонам и углу между ними. Следовательно, Доказательства равенства треугольников 7 классАВС =Доказательства равенства треугольников 7 классА1В1С1. Теорема доказана.

Замечание. Чтобы отрезок ВВ2 проходил внутри треугольника ABC, следует прикладывать треугольники большей стороной.

Говорят, что три стороны задают треугольник однозначно.

Итак, теперь вы знаете три признака равенства треугольников. Можно сформулировать и другие признаки равенства треугольников, в которых неизбежно будет присутствовать соответственное равенство каких-то трех элементов двух треугольников. Однако не любые три элемента задают треугольник. Так, например, если три угла одного треугольника соответственно равны трем углам другого треугольника, то такие треугольники не обязательно равны. То же касается треугольников, у которых соответственно равны две стороны и угол, противолежащий одной из этих сторон.

На рисунке 145, а, б вы видите пары таких неравных треугольников.

Доказательства равенства треугольников 7 класс

Пример №9

У простой замкнутой ломаной ABCD AB=AD, BC = DC. Доказать, что Доказательства равенства треугольников 7 классB = Доказательства равенства треугольников 7 классD и луч АС — биссектриса угла BAD.

Доказательство:

Проведем отрезок АС (рис. 146).

Доказательства равенства треугольников 7 класс

Треугольники ABC и ADC равны по 3-му признаку равенства треугольников (AB=AD и BC = DC по условию, сторона АС — общая). Поэтому Доказательства равенства треугольников 7 классB =Доказательства равенства треугольников 7 классD и Доказательства равенства треугольников 7 классBAC =Доказательства равенства треугольников 7 классDAC как соответствующие в двух равных треугольниках и луч АС — биссектриса угла BAD.

Пример №10

Доказать равенство треугольников по двум сторонам и медиане между ними.

Доказательство:

Доказательства равенства треугольников 7 класс

Нужно доказать, что Доказательства равенства треугольников 7 классАВС =Доказательства равенства треугольников 7 классА1В1С1. Продлим в каждом треугольнике данную медиану на ее длину так, что MD = ВМ, M1D1=B1M1. Так как Доказательства равенства треугольников 7 классAMD =Доказательства равенства треугольников 7 классСМВ по 1-му признаку равенства треугольников (AM = МС, Доказательства равенства треугольников 7 классAMD =Доказательства равенства треугольников 7 классCMB как вертикальные, ВМ = MD по построению), то AD = BC. Аналогично Доказательства равенства треугольников 7 классAXMXDX = Доказательства равенства треугольников 7 классС1М1В1, откуда A1D1 = B1C1. По условию ВС = В1С1, следовательно, AD=A1D1 и Доказательства равенства треугольников 7 классABD =Доказательства равенства треугольников 7 классA1B1D1 по трем сторонам. Тогда Доказательства равенства треугольников 7 классABM =Доказательства равенства треугольников 7 классA1B1M1 и Доказательства равенства треугольников 7 классАВМ =Доказательства равенства треугольников 7 классА1В1М1 по 1-му признаку равенства треугольников. Отсюда AM =А1М1, АС =А1С1 (так как ВМ и В1М1 — медианы) и Доказательства равенства треугольников 7 классАВС =Доказательства равенства треугольников 7 классА1В1С1 по трем сторонам.

Пример №11

Два равных отрезка АВ и CD пересекаются в точке О и AD = BC. Доказать, что ВО = DO.

Доказательство:

Соединим точки В и D отрезком (рис. 148).

Доказательства равенства треугольников 7 класс

Треугольники ABD и CDB равны по трем сторонам (сторона BD — общая, AB=CD и AD=СВ по условию). Из равенства треугольников следует, что Доказательства равенства треугольников 7 классABD =Доказательства равенства треугольников 7 классCDB. Тогда Доказательства равенства треугольников 7 классBOD — равнобедренный (по признаку равнобедренного треугольника), откуда ВО=DO.

Серединный перпендикуляр к отрезку

Определение. Серединным перпендикуляром к отрезку называется прямая, перпендикулярная этому отрезку и проходящая через его середину.

Прямая CD — серединный перпендикуляр к отрезку АВ, то есть Доказательства равенства треугольников 7 класс(рис. 152).

Доказательства равенства треугольников 7 класс
Теорема (о серединном перпендикуляре).

Любая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Если точка равноудалена от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

В данной теореме два утверждения: прямое и ему обратное. Докажем каждое из этих утверждений отдельно.

1) Дано: Доказательства равенства треугольников 7 класс— серединный перпендикуляр к отрезку Доказательства равенства треугольников 7 класс(рис. 153).

Доказательства равенства треугольников 7 класс

Доказательство:

По определению серединного перпендикуляра Доказательства равенства треугольников 7 классТогда в треугольнике АКВ высота КМ является медианой. По признаку равнобедренного треугольника Доказательства равенства треугольников 7 классАКВ — равнобедренный, поэтому КА=КВ.

2) Дано: Доказательства равенства треугольников 7 класс(рис. 154).

Доказательства равенства треугольников 7 класс

Доказать: Доказательства равенства треугольников 7 классгде Доказательства равенства треугольников 7 класс— серединный перпендикуляр к отрезку АВ.

Доказательство:

Проведем в равнобедренном Доказательства равенства треугольников 7 классАКВ высоту КМ, которая по свойству равнобедренного треугольника будет и медианой. Получим Доказательства равенства треугольников 7 классПрямая Доказательства равенства треугольников 7 класс, проходящая через высоту КМ, — серединный перпендикуляр к отрезку АВ.

Геометрическим местом точек плоскости (или пространства) называется множество всех точек плоскости (или пространства), обладающих общим свойством.

Из доказанной теоремы следует, что серединный перпендикуляр к отрезку — это геометрическое место точек плоскости, равноудаленных от концов отрезка.

Пример №12

В четырехугольнике (рис. 155) ABCD AB=BC, AD=DC.

Доказательства равенства треугольников 7 класс

Доказать, что ACДоказательства равенства треугольников 7 классBD.

Доказательство:

1-й способ. Из равенства треугольников ABD и CBD по трем сторонам следует, что Доказательства равенства треугольников 7 классABD =Доказательства равенства треугольников 7 классCBD. В равнобедренном треугольнике ABC биссектриса ВМ является и высотой. Поэтому ACДоказательства равенства треугольников 7 классBD.

2-й способ. Точки В и D равноудалены от концов отрезка АС, поэтому они лежат на серединном перпендикуляре к отрезку АС. Так как через две точки проходит единственная прямая, то BD — серединный перпендикуляр к отрезку АС. Отсюда ACДоказательства равенства треугольников 7 классBD. и AM = МС.

Пример №13 (1-я замечательная точка треугольника).

Доказать, что серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Доказательство:

Пусть два серединных перпендикуляра к сторонам АС и АВ пересекаются в точке О (рис. 156).

Доказательства равенства треугольников 7 класс

Точка О лежит на серединном перпендикуляре ОМ, поэтому ОА = ОС. Точка О лежит на серединном перпендикуляре ОК, поэтому ОА = ОВ. Отсюда ОВ = ОС. Поскольку точка О равноудалена от концов отрезка ВС, то она лежит на серединном перпендикуляре к отрезку ВС. Таким образом, третий серединный перпендикуляр пройдет через точку О, и все три серединных перпендикуляра к сторонам треугольника пересекутся в одной точке.

  • 1. Если ножку циркуля поставить в точку О и построить окружность радиусом OA, то она пройдет через все вершины треугольника в силу того, что OA = OB = ОС. Такая окружность называется описанной около треугольника. В данной задаче мы доказали, что центр окружности, описанной около треугольника, лежит в точке пересечения серединных перпендикуляров к его сторонам.
  • 2. Точка пересечения серединных перпендикуляров к сторонам треугольника — это еще одна замечательная точка треугольника помимо уже известных вам точек пересечения биссектрис, медиан, высот.

Напомню:

Три признака равенства треугольников:

  • По двум сторонам и углу между ними.
  • По стороне и двум прилежащим к ней углам.
  • По трем сторонам.
  1. Углы при основании равнобедренного треугольника равны.
  2. Биссектриса равнобедренного треугольника, проведенная из вершины к основанию, является его высотой и медианой.
  3. Если два угла треугольника равны, то треугольник равнобедренный (признак равнобедренного треугольника).
  4. Если высота треугольника является его медианой или биссектрисой, или медиана является его биссектрисой, то треугольник равнобедренный (признаки равнобедренного треугольника).
  5. Любая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Если точка равноудалена от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.
  6. Все три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке (1-я замечательная точка треугольника).
Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Признаки равенства прямоугольных треугольников
  • Соотношения в прямоугольном треугольнике
  • Сумма углов треугольника
  • Внешний угол треугольника
  • Задачи на построение циркулем и линейкой
  • Задачи на построение по геометрии
  • Угол — определение, виды, как обозначают с примерами
  • Перпендикулярные прямые в геометрии

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Признаки равенства треугольников. Практическая часть. 7 класс.Скачать

Признаки равенства треугольников. Практическая часть. 7 класс.

Признаки равенства треугольников

Доказательства равенства треугольников 7 класс

О чем эта статья:

Видео:Геометрия 7 класс (Урок№10 - Первый признак равенства треугольников.)Скачать

Геометрия 7 класс (Урок№10 - Первый признак равенства треугольников.)

Первый признак равенства треугольников

Конечно, равенство треугольников всегда можно доказать наложением одного треугольника на другой. Но, согласитесь, — это несерьезно. Какое может быть наложение, когда есть три теоремы и можно их доказать.

Давайте рассмотрим три признака равенства треугольников.

Теорема 1. Равенство треугольников по двум сторонам и углу между ними.

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Доказательства равенства треугольников 7 класс

При наложении △A1B1C1 на △ABC вершина A1 совмещается с вершиной A, и сторона A1B1 накладывается на сторону AB, AC — на сторону A1C1.

Сторона A1B1 совмещается со стороной AB, вершина B совпадает с вершиной B1, сторона A1С1 совмещается со стороной AС, вершина C совпадает с вершиной C1.

Значит, происходит совмещение вершин В и В1, С и С1.

Видео:Второй признак равенства треугольников. 7 класс.Скачать

Второй признак равенства треугольников. 7 класс.

Второй признак равенства треугольников

Теорема 2. Равенство треугольников по стороне и двум прилежащим к ней углам.

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Доказательства равенства треугольников 7 класс

Путем наложения △ABC на △A1B1C1, совмещаем вершину А с вершиной A1, вершины В и В1 лежат по одну сторону от А1С1.

Тогда АС совмещается с A1C1, вершина C совпадает с C1, поскольку мы знаем, что АС = A1C1.

AB накладывается на A1B1, поскольку мы знаем, что ∠A = ∠A1.

CB накладывается на C1B1, поскольку мы знаем, что ∠C = ∠C1.

Вершина B совпадает с вершиной B1.

Видео:Геометрия 7 класс (Урок№14 - Второй и третий признаки равенства треугольников.)Скачать

Геометрия 7 класс (Урок№14 - Второй и третий признаки равенства треугольников.)

Третий признак равенства треугольников

Теорема 3. Равенство треугольников по трем сторонам.

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Доказательства равенства треугольников 7 класс

Доказательство 3 признака равенства треугольников:

Приложим △ABC к △A1B1C1 таким образом, чтобы вершина A совпала с вершиной A1, вершина B — с вершиной B1, вершина C и вершина C1 лежат по разные стороны от прямой А1В1.

Кроме трех основных теорем, запомните еще несколько признаков равенства треугольников.

Равны ли треугольники, можно определить не только по сторонам и углам, но и по высоте, медиане и биссектрисе.

  1. Если угол, сторона, противолежащая этому углу, и высота, опущенная на другую сторону, одного треугольника соответственно равны углу, стороне и высоте другого треугольника — такие треугольники равны.
    Доказательства равенства треугольников 7 класс
  2. Если две стороны и медиана, заключенная между ними, одного треугольника соответственно равны двум сторонам и медиане другого треугольника — такие треугольники равны.
    Доказательства равенства треугольников 7 класс
  3. Если сторона и две медианы, проведенные к двум другим сторонам, одного треугольника соответственно равны стороне и двум медианам другого треугольника — такие треугольники тоже равны.
    Доказательства равенства треугольников 7 класс
  4. Если две стороны и биссектриса, заключенная между ними, одного треугольника соответственно равны двум сторонам и биссектрисе другого треугольника — вы уже догадались сами: эти ребята равны.
    Доказательства равенства треугольников 7 класс
  5. Два треугольника равны, если сторона, медиана и высота, проведенные к другой стороне, одного треугольника соответственно равны стороне, медиане и высоте другого треугольника.
    Доказательства равенства треугольников 7 класс

Как видите, доказать равенство треугольников можно по множеству признаков и десятком способов. Три признака равенства треугольников — основные. Все остальные способы также стоит запомнить, ведь треугольник — только с виду простая фигура.

📺 Видео

7 класс, 19 урок, Второй признак равенства треугольниковСкачать

7 класс, 19 урок, Второй признак равенства треугольников

Геометрия. 7 класс. Теоремы. Т7. Второй признак равенства треугольников.Скачать

Геометрия. 7 класс. Теоремы. Т7. Второй признак равенства треугольников.

Первый признак равенства треугольников | Теорема + доказательствоСкачать

Первый признак равенства треугольников | Теорема + доказательство

Геометрия. 7 класс. Теоремы. Т8. Третий признак равенства треугольников.Скачать

Геометрия. 7 класс. Теоремы. Т8. Третий признак равенства треугольников.

первый признак равенства треугольников. Задачи по готовым чертежам, рисункам. 7 классСкачать

первый признак равенства треугольников. Задачи по готовым чертежам, рисункам. 7 класс

7 класс, 20 урок, Третий признак равенства треугольниковСкачать

7 класс, 20 урок, Третий признак равенства треугольников

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Третий признак равенства треугольников (доказательство) - геометрия 7 классСкачать

Третий признак равенства треугольников (доказательство) - геометрия 7 класс

Признаки Равенства Треугольников, для Чайников, Геометрия 7 класс, 3-й Урок:Скачать

Признаки Равенства Треугольников, для Чайников, Геометрия 7 класс, 3-й Урок:

Задачи на доказательство по геометрии. Первый признак равенства треугольников.Скачать

Задачи на доказательство по геометрии. Первый признак равенства треугольников.
Поделиться или сохранить к себе: