Геометрия | 5 — 9 классы
Для доказательства равенства треугольников ABC и DEF достаточно доказать, что .
( Чертёж на картинке).
АВ и EF равны, тогда по двум сторонам и углу между ними они будут равны.
- Доказать равенство треугольников?
- * Картинка треугольника во вложениях — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — -Задание : Доказать что треугольник ABC — равнобедренный?
- 1. Для доказательства равенства треугольников АВС и NКМ достаточно доказать, что… 1) С = К ; 2) С = М ; 3) В = М?
- Нужно доказать, что треугольники равны?
- Как доказать равенство треугольника?
- Даны равнобедренные треугольники ABC и MKO с основаниями BC и KO, AB = MK?
- В треугольниках ABC и A1B1C1 Угол C = Угол C1 = 90 градусов?
- ОЧЕНЬ НАДО, ГО НЕ МОГУ РЕШИТЬ?
- Доказать равенство треугольников?
- Как доказать что треугольник ABC
- Математика
- Равенство треугольников
- Внешний угол треугольника
- Прямоугольный треугольник
- Тупоугольный треугольник
- Взаимное отношение углов и сторон в треугольнике
- Равенство прямоугольных треугольников
- Презентация по геометрии на тему «Второй признак равенства треугольников»
- Описание презентации по отдельным слайдам:
- Дистанционное обучение как современный формат преподавания
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Математика: теория и методика преподавания в образовательной организации
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
Видео:Геометрия Найдите неизвестную сторону треугольника DEF если 1) DE = 4 см DF = 2√3 см угол D = 30Скачать
Доказать равенство треугольников?
Доказать равенство треугольников.
Видео:Построить линию пересечения треугольников ABC и DEF. Определить видимость. Вариант 2Скачать
* Картинка треугольника во вложениях — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — -Задание : Доказать что треугольник ABC — равнобедренный?
Задание : Доказать что треугольник ABC — равнобедренный.
Видео:№164. На сторонах равностороннего треугольника ABC отложены равные отрезки AD, BE и CF, как показаноСкачать
1. Для доказательства равенства треугольников АВС и NКМ достаточно доказать, что… 1) С = К ; 2) С = М ; 3) В = М?
1. Для доказательства равенства треугольников АВС и NКМ достаточно доказать, что… 1) С = К ; 2) С = М ; 3) В = М.
2. Для доказательства равенства треугольников АPK и DCE достаточно доказать, что… 1) АР = CD ; 2) AP = DE ; 3) AP = CE.
3. Треугольники АВС и А1В1С1 равны, если… 1) АВ = А1В1, ВС = В1С1, А = А1 ; 2) АС = А1С1, ВС = В1С1, С = С1 ; 3) А = А1, В = В1, С = С1.
4. Для данного четырехугольника неверно, что… 1) АВ = ВС ; 2) АВ = DC ; 3) А = С.
Видео:№541. Подобны ли треугольники ABC и DEF, если ∠A= 106°, ∠B = 34°, ∠E = 106°, ∠F=40°, АС=4,4см,Скачать
Нужно доказать, что треугольники равны?
Нужно доказать, что треугольники равны.
С оформлением и доказательством.
Видео:Построить линию пересечения треугольников ABC и DEF. Определить видимость. Вариант 4Скачать
Как доказать равенство треугольника?
Как доказать равенство треугольника?
Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
Даны равнобедренные треугольники ABC и MKO с основаниями BC и KO, AB = MK?
Даны равнобедренные треугольники ABC и MKO с основаниями BC и KO, AB = MK.
Какое условие достаточно добавить чтобы данные треугольники были равны : а) по первому признаку равенства треугольников б)по третьему признаку равенства треугольников?
Видео:Геометрия Найдите площадь треугольника DEF если 1) DE = 7 см DF = 8 см угол D = 60 2) DE = 10 см EFСкачать
В треугольниках ABC и A1B1C1 Угол C = Угол C1 = 90 градусов?
В треугольниках ABC и A1B1C1 Угол C = Угол C1 = 90 градусов.
Дано равенство AC = A1C1 и ещё одно равенство, позволяющее доказать равенство треугольников по гипотенузе и катету.
В условии равенство AC = A1C1 заменили равенством Угол B = Угол B1.
По какому признаку теперь можно доказать равенство треугольников?
Видео:№131. В треугольниках DEF и MN PEF=NP, DF=MP и ∠F=∠P. Биссектрисы углов Е и D пересекаются вСкачать
ОЧЕНЬ НАДО, ГО НЕ МОГУ РЕШИТЬ?
ОЧЕНЬ НАДО, ГО НЕ МОГУ РЕШИТЬ.
1)Даны треугольники ABC и DEF, AB = DE, BC = EF, угол В равен углу Е.
Равны ли треугольники АВС и DEF?
2)даны треугольники ABC и DEF, ∠C = 90°, ∠F = 90°, AB = DE, BC = EF.
Равны ли треугольникию.
Видео:Построить линию пересечения треугольников ABC и DEF. Вариант 9Скачать
Доказать равенство треугольников?
Доказать равенство треугольников.
Видео:№167. Стороны равностороннего треугольника ABC продолжены, как показано на рисунке 94, на равныеСкачать
Как доказать что треугольник ABC
Как доказать что треугольник ABC
На странице вопроса Для доказательства равенства треугольников ABC и DEF достаточно доказать, что ? из категории Геометрия вы найдете ответ для уровня учащихся 5 — 9 классов. Если полученный ответ не устраивает и нужно расшить круг поиска, используйте удобную поисковую систему сайта. Можно также ознакомиться с похожими вопросами и ответами других пользователей в этой же категории или создать новый вопрос. Возможно, вам будет полезной информация, оставленная пользователями в комментариях, где можно обсудить тему с помощью обратной связи.
Углол ABC = 20, другой угол 20 и третий20.
Сумма углов, прилежащих к боковой стороне трапеции равна 180°. ∠ADC = 180° — ∠BCD = 180° — 120° = 60° Проведем две высоты АК и СН. ΔDCH : ∠DHC = 90°, ∠HDC = 60°, ⇒ ∠HCD = 30°. HD = CD / 2 = 25 / 2 как катет, лежащий напротив угла в 30°. По теорем..
А + (а : 2) = 90 2а + а = 180 а = 60 а : 2 = 30.
По теореме об отношении площадей подобных треугольников знаем, что площади подобных треугольников относятся, как k² = >² = > Но так как площадь хотя бы одно треугольника неизвестна, то задача дальше не решается.
1 задание 1) + 2) — 3) — 4) + 5) + 6) — 7) + 8) — 2 — 3 задание На фото.
Решение — в приложении.
Сумма внутреннего и внешнего углов равна 180° Находим внутренний угол при вершине b (т. Е. ∠abc) : 180 — 140 = 40° Поскольку треугольник abc — равнобедренный, следовательно углы при основании равны, следовательно∠abc = ∠acb = 40°.
Tgα = ВД(высоты) / 0, 5 * АС⇒10 / 7 = ВД / 14 ВД(высота) = 10 * 14 / 7 = 20⇒Sавс = 1 / 2 * 28 * 20 = 280.
1) 6 : 2 = 3 см — середина АВ и середина СD , так как они равны. 6 см + 3 см + 3 см = 12 см Ответ : 12 см 2) Не знаю как решать , извини. 3) Возьмем АВ за х AM = MB = x 2 Тогда MN = BN = MB 2 = x 4 AM : MN = x 2 : x 4 = 2 : 1 BN : AM = x ..
Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать
Математика
Треугольник есть определенная часть плоскости, ограниченная тремя взаимно пересекающимися прямыми линиями.
Стороны треугольника. Прямые линии, ограничивающие треугольник, называются сторонами треугольника.
Каждые две пересекающиеся прямые образуют угол треугольника.
Три пересекающиеся стороны образуют три угла треугольника.
Вершины. Точки пересечения сторон называются вершинами треугольника.
На чертеже 35 имеем треугольник ABC, три стороны AB, BC и AC, три угла BAC, ABC и BCA и три вершины A, B, C. Для сокращения слово треугольник изображают иногда знаком ∆ .
Треугольники получают различные названия, смотря по взаимному отношению его сторон и по углам, его составляющим.
Разделение треугольников по отношению к сторонам. По отношению к сторонам треугольники делятся на треугольники разносторонние, равнобедренные и равносторонние.
Разносторонний есть такой треугольник, у которого все стороны не равны.
Треугольник ABC (черт. 36) есть разносторонний треугольник. У него все стороны различны: AB > BC > AC.
Равнобедренный есть такой треугольник, у которого две стороны равны. На черт. 37 ABC есть равнобедренный треугольник. У него две стороны AB и BC равны (AB = BC).
Равносторонний есть такой треугольник, у которого все три стороны равны.
Треугольник ABC (черт. 38) равносторонний, ибо у него все стороны равны: AB = BC = AC.
Разделение треугольников по отношению к углам. По отношению к углам треугольники разделяются на остроугольные, прямоугольные и тупоугольные.
Остроугольный есть такой треугольник, у которого все три угла острые.
Треугольник ABC (черт. 39) есть остроугольный, ибо все его три угла A, B, C острые.
Прямоугольный есть такой треугольник, у которого один из углов прямой.
Треугольник ABC прямоугольный, ибо угол ABC прямой (черт. 40).
Тупоугольный есть такой треугольник, у которого один из углов тупой.
Треугольник ABC (черт. 36) тупоугольный, ибо угол ACB тупой.
В каждом треугольнике можно выбрать какую-нибудь сторону за основание, тогда перпендикуляр, опущенный из противоположной вершины на основание, называется высотою треугольника.
Высота есть расстояние вершины от основания треугольника, считаемое по перпендикуляру. Высота есть длина перпендикуляра, опущенного из вершины на основание.
Если на чертеже 41 примем линию AB за основание, то линия CH будет высотой треугольника. Если примем на чертеже 42 за основание линию BC, то высотой будет линия AH. Если бы за основание была выбрана линия AB, то высотой была бы линия CK.
Свойство сторон треугольника. Во всяком треугольнике каждая сторона меньше суммы и больше разности двух других сторон.
Так, в треугольнике ABC (черт. 35)
AC AC — BC
BC > AB — AC
AC > BC — AB
Равные треугольники. Два треугольника называются равными, если при наложении друг на друга они совмещаются всеми своими точками.
Видео:Линия пересечения плоскостейСкачать
Равенство треугольников
Теорема 19. Два треугольника равны, если три стороны одного соответственно равны трем сторонам другого.
Дано. В двух треугольниках ABC и DEF (черт. 43) стороны равны
AB = DE, BC = EF, AC = DF
Требуется доказать, что ∆ ABC = ∆ DEF.
Доказательство. Наложим треугольник DEF на треугольник ABC, сторону DF на сторону AC точкой D на точку A. По равенству сторон AC и DF точка F упадет на точку C.
Чтобы доказать, что точка E упадет на точку B докажем, что она не может упасть ни внутри, ни вне, ни на одну из сторон треугольника.
a) Положим, что точка E упадет внутри треугольника в точку E’, тогда треугольник DEF примет положение треугольника AE’C, DE займет положение линии AE’ и EF положение линии E’C, следовательно,
Линия ABC, будучи внешней ломаной, больше линии AE’C внутренней ломаной, следовательно,
Заменяя AE’ и E’C равными им сторонами DE и EF, имеем:
но AB = DE, следовательно, BC > EF, что противоречит данным условиям. Итак, точка E не может упасть внутри треугольника.
b) Положим, точка E упала вне треугольника в точку E». В этом случае ∆AE»C = ∆DEF и тогда
Обозначим букой O точку пересечения линий AE» и BC. Из чертежа видно, что
AO + BO > AB
CO + OE» > E»C
Сложив эти неравенства, имеем:
AO + BO + CO + OE» > AB + E»C
Так как BO + CO = BC, AO + OE» = AE», то
Здесь AE» = DE, CE» = EF, следовательно,
Вычтя по равной величине из обоих частей последнего неравенства, получаем:
что противоречит данным условиям. Итак, точка E не может упасть вне треугольника.
c) Точка E не может упасть на одну из сторон треугольника в точку E»’, ибо стороны DC и AB равны. Точно также если бы E упала в точку O, то выходило бы, что BC > OC, но OC = EF, следовательно, BC > EF, что противоречит условию.
Итак, точка E должна непременно упасть в точку B, следовательно, при наложении сторона DE совпадет со стороной AB, а сторона EF со стороной BC и треугольник DEF с треугольником ABC.
Из равенства треугольников следует, что все остальные части их равны, т. е.
Теорема 20. Два треугольника равны, когда они имеют по равному углу, содержащемуся между равными сторонами.
Дано. В двух треугольниках ABC и DEF (черт. 44)
AB = DE, AD = DF, ∠BAC = ∠EDF
Требуется доказать, что ∆ABC = ∆DEF.
Примечание. Иногда указывают равные части на чертеже, отмечая их одинаковыми значками.
Доказательство. Наложим треугольник DEF на треугольник ABC, сторону DF на сторону AC, точкой D на точку A; тогда по равенству линий DF и AC точка F упадет в точку C и по равенству углов A и D линия DE пойдет по линии AB; по равенству линий DE и AB точка E упадет на точку B. Если E и F две точки линии EF совпали с B и C двумя точками линии BC, то и вся линия EF совпадет с линией BC, и треугольник DEF совпадет с треугольником ABC. Отсюда следует, что и все остальные части треугольников равны, т. е.
BC = EF, ∠B = ∠E, ∠C = ∠F.
Теорема 21. Два треугольника равны, если сторона и два лежащие на ней угла одного равны стороне и двум лежащим на ней углам другого треугольника.
Дано. В треугольниках ABC и DEF (черт. 44)
∠ A = ∠D, ∠C = ∠F, AC = DF
Требуется доказать, что ∆ABC = ∆DEF.
Доказательство. Наложим треугольник DEF на треугольник ABC, стороной DF на AC, точкой D на A, тогда по равенству сторон AC и DF точка F упадет на точку C. По равенству углов A и D линия DE пойдет по линии AB и по равенству углов C и F линия FE пойдет по линии CB. Так как линия FE и DE совпадут с линиями CB и AB, то и точка E непременно совпадет с точкой B, ибо две прямые линии пересекаются в одной точке, следовательно два треугольника равны (ЧТД).
Из того, что равные треугольники совмещаются при наложении всеми своими частями вытекает следствие. В равных треугольниках против равных сторон лежат равные углы и наоборот.
Соответственные части треугольников. В двух равных треугольниках равные углы и равные стороны называются соответственными углами и сторонами.
Видео:Пересечение двух плоскостей. Плоскости в виде треугольникаСкачать
Внешний угол треугольника
Внешний угол треугольника есть всякий угол смежный с углом треугольника.
Так, на чертеже 45, угол BCD есть внешний угол.
Теорема 22. Во всяком треугольнике внешний угол больше каждого внутреннего не смежного с ним.
Дан внешний угол BCD (черт. 45).
Требуется доказать, что BCD > A и BCD > B.
Доказательство. Точку Q середину линии BC соединим с A и отложим на продолжении линии AQ линию QF равную AQ.
Соединим F с C; тогда два треугольника ABQ и QFC равны, ибо имеют по равному углу, лежащему между двумя равными сторонами.
Действительно, по построению BQ = QC, AQ = QF, а углы BQA и FQC равны как вертикальные, следовательно,
Если линия AQ = QF, то и ∠ABC = ∠BCF.
Угол BCD > угла BCF, следовательно, и угол BCD > ABC.
Производя подобное же построение, мы могли бы доказать, что угол ACN > угла BAC.
Так как ACN = BCD, то и угол BCD > угла BAC.
Видео:№192. В треугольнике ABC угол А равен 40°, а угол BCE, смежный с углом ACB, равен 80°Скачать
Прямоугольный треугольник
Следствие 1. В прямоугольном треугольнике из трех углов один прямой, а другие два острые.
Доказательство. Внешний угол BAD прямоугольного треугольника ABC (черт. 46) больше внутренних углов B и C, следовательно, оба угла B и C острые.
Гипотенуза. Сторона прямоугольного треугольника, лежащая против прямого угла, называется гипотенузой.
Катеты. Стороны прямоугольного треугольника, лежащие против острых углов, называются катетами.
Сторона BC есть гипотенуза, а стороны AB и AC катеты (черт. 46).
Гипотенуза больше каждого из катетов и меньше суммы двух катетов, ибо гипотенуза наклонная, а катеты перпендикулярны.
Видео:Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)Скачать
Тупоугольный треугольник
Следствие 2. В тупоугольном треугольнике один угол тупой, а два остальные угла острые.
Доказательство. В тупоугольном треугольнике NBC (черт. 47) угол NCB тупой. Продолжая сторону NC, мы находим внешний острый угол BCD. Так как BCD > N и BCD > B, то оба угла N и B тупоугольного треугольника острые. Отсюда делаем заключение : в треугольнике не может быть более одного прямого и более одного тупого угла .
Теорема 23 . Если две стороны одного треугольника равны двум сторонам другого, а углы, заключающиеся между этими сторонам не равны, то против большего угла лежит большая сторона.
Дано. В двух треугольниках ABC и DEF (черт. 48)
AC = DF, AB = DE, угол BAC > угла EDF.
Требуется доказать, что BC > EF.
Доказательство . Наложим треугольник DEF на ABC, стороной DF на AC, точкой D на A. Точка F по равенству сторон DF и AC совпадет с C.
Так как D меньше угла A, то сторона DE пойдет по направлению AE’.
Здесь могут быть три случая: точка E может упасть вне, на сторону и внутри треугольника ABC, т. е. в точках E’, E» и E»’.
1) 1-й случай . Когда точка E упадет в E’, треугольник DEF займет положение треугольника AE’C, следовательно,
AE’ = DE = AB
E’C = EF
Не трудно заметить, что
AE» + E»B > AB
CE» + E»E’ > CE’
Сложив эти неравенства, получим:
AE» + E»B + CE» + E»E’ > AB + CE’
AE» + E»E = AE’
CE» + E»B = BC
Здесь AE’ = AB, следовательно,
BC > CE’ или
BC > EF (ЧТД).
2) 2-й случай . Точка E упадет в E», тогда E»C = EF и
BC > E»C, а следовательно, BC > EF.
3) 3-й случай . Точка E упадет в E»’. В этом случае
По свойству ломаных (теорема 1)
AB + BC > AE»’ + E»’C или
AB + BC > DE + EF.
Так как AB = DE, то последнее неравенство дает
Итак во всех трех случаях BC > EF (ЧТД).
Теорема 24 . (Обратная 23). Если две стороны одного треугольника равны двум сторонам другого, а третьи стороны не равны, то против большей стороны лежит больший угол.
Дано. В треугольниках ABC и DEF (черт. 48) AB = DE, AC = DF и BC > EF.
Требуется доказать, что угол BAC > угла EDF.
Доказательство . Здесь могут быть только три предположения: угол BAC может быть равен, меньше или больше угла EDF.
1) Если бы угол BAC равнялся углу EDF, то два треугольника ABC и EDF были бы равны (теорема 20). В этом случае сторона BC равнялась бы стороне EF, что противоречит условию.
2) Если бы угол BAC был меньше угла EDF, то по предыдущей теореме и сторона BC была бы меньше EF, что также противоречит условию; следовательно, угол BAC больше угла EDF (ЧТД).
Видео:7 класс, 15 урок, Первый признак равенства треугольниковСкачать
Взаимное отношение углов и сторон в треугольнике
Теорема 25 . В равнобедренном треугольнике против равных сторон лежат равные углы.
Дан равнобедренный треугольник ABC (черт. 49), т. е. треугольник, у которого AB = BC.
Требуется доказать, что ∠ A = ∠ C.
Доказательство . Соединим точку B с точкой D, которая является серединой стороны AC.
Два треугольника ABD и BDC равны, ибо имеют по три равных стороны. Действительно:
BD — общая сторона;
AD = DC по построению (D середина отрезка AC);
AB = BC по условию.
В равных треугольниках против равных сторон лежат равные углы, следовательно,
Теорема 26 (обратная 25). В треугольнике против равных углов лежат равные стороны .
Дано. В треугольнике ABC ∠ A = ∠ C (черт. 50).
Требуется доказать, что AB = BC.
Доказательство . Положим, сторона AB > BC. Тогда, отложив на стороне AB часть AD равную BC, имеем два треугольника ADC и ABC, у которых
AC — общая сторона,
AD = BC по построению,
∠ A = ∠ C по условию.
Таким образом, AC и AD, две стороны треугольника ADC и уголь между ними A соответственно равны AC и BC, двум сторонам треугольника ABC, и углу C между ними. При этих условиях треугольники ADС и ABC были бы равны, что очевидно несообразно, ибо ∆ADC
Теорема 27 . В треугольнике против большего угла лежит большая сторона .
Дано. В треугольнике ABC (черт. 51) ∠ A > ∠ C.
Т ребуется доказать, что BC > AB.
Доказательство . Построим при точке A угол DAC равный углу C, тогда в треугольнике BDA
В равнобедренном треугольнике ADC
следовательно, предыдущее неравенство примет вид
Теорема 28 (обратная 27). В треугольнике против большей стороны лежит больший угол .
Дано. В треугольнике ABC (черт. 51) BC > AB.
Требуется доказать, что ∠ BAC = ∠ BCA.
Доказательство . a) Угол A не может быть равен углу C, ибо тогда сторона AB равнялась бы стороне BC (теорема 26).
b) Угол A не может быть меньше C, ибо тогда сторона BC была бы меньше AB (теорема 27), следовательно, BC > AB (ЧТД).
Видео:№119. В равнобедренном треугольнике DEK с основанием DK=16см отрезок EF— биссектриса,Скачать
Равенство прямоугольных треугольников
Так как у прямоугольных треугольников прямые углы равны, то для равенства их требуется меньше условий.
Теорема 29 . Два прямоугольных треугольника равны, когда две стороны одного равных двум сторонам другого.
Здесь имеют место два случая:
A) Когда два катета одного равны двум катетам другого и
B) Когда они имеют по равному катету и равной гипотенузе .
Разберем эти два случая отдельно.
A) Прямоугольные треугольника ABC и DEF (черт. 52) имеют равные катеты
В этом случае треугольники равны, ибо они имеют по двум равным сторонам и по равному углу между ними.
B) Прямоугольные треугольники ABC и DEF имеют по равному катету и равной гипотенузе, следовательно, BC = EF, DE = AB (черт. 52).
Доказательство . Наложим треугольник DEF на ABC, катет DE на AB, точку D на A. По равенству линий AB и DE точка E упадет на точку B. По равенству прямых углов A и D линия DF пойдет по линии AC. Отрезки EF и BC как равные наклонные находятся на равных расстояниях от перпендикуляра, следовательно, расстояние DF и AC равны и отрезок EF пойдет по отрезку BC.
Теорема 30 . Два прямоугольных треугольника равны, если они имеют по равной стороне и равному соответственному углу.
Здесь тоже имеют место два случая:
A) Когда прямоугольные треугольники имеют по равному катету и равному острому углу и B) когда они имеют по равной гипотенузе и равному острому углу .
Рассмотрим эти два случая отдельно:
A) Если прямоугольные треугольники имеют по равному катету и равному острому углу, то острый угол может быть a) прилежащий или b) противолежащий.
a) Прямоугольные треугольники имеют по равному катету и равному прилежащему острому углу, т. е.
DE = AB и ∠ E = ∠ B (черт. 52).
В этом случае треугольники равны, ибо они имеют по равной стороне и равным двум лежащим на ней углам.
b) Прямоугольные треугольники имеют по равному катету и по равному противоположному острому углу, т. е.
DE = AB, ∠ C = ∠ F (черт. 52).
Повернуть треугольник DEF около оси DE и приставив сторону DE к стороне AB так, чтобы он занял положение ABF (черт. 53), получим равнобедренный треугольник FBC, ибо ∠ F = ∠ C, следовательно, наклонные BF и BC тоже равны и находятся на равных расстояниях AF и AC от перпендикуляра AB, т. е. два треугольника ABF и ABC равны, а следовательно равны и треугольники ABC и DEF (ЧТД).
B) Прямоугольные треугольники имеют по равной гипотенузе и равному острому углу, т. е.
BC = EF, ∠ C = ∠ F (черт. 52)
Доказательство . Наложим треугольник DEF на ABC, сторону DF на AC, точку F на C. По равенству углов F и C линия FE пойдет по линии BC и по равенству отрезков EF и BC точка E упадет на точку B. Линия ED непременно пойдет по линии BA, ибо обе линии ED и BA перпендикулярны к линии AC, а из точки на прямую линию можно опустить только один перпендикуляр, следовательно, треугольник DEF совпадет с треугольником ABC во всех своих частях (ЧТД).
Теорема 31 . Все точки биссектрисы угла находятся на равном расстоянии от его сторон.
Дан угол ABC (черт. 54) и биссектриса BO, следовательно
Требуется доказать, что для какой-нибудь точки O перпендикуляры OE и OF равны.
Доказательство . Опустив перпендикуляры OE и OF, находим, что прямоугольные треугольники BEO и BFO равны, ибо BO сторона общая
∠ EBO = ∠ FBO по условию,
следовательно, EO = FO (см. теорему 30) (ЧТД).
Теорема 32 . Перпендикуляры, восставленные из середины сторон треугольника, пересекаются в одной точке .
Дан треугольник ABC (черт. 55), O есть точка пересечения перпендикуляров DO и EO, восставленных из середин сторон AB и AC, следовательно,
Требуется доказать, что точка O находится на перпендикуляре, восставленном из середины третьей стороны BC.
Доказательство . Соединим точку O с вершинами треугольника ABC отрезками AO, BO, CO.
Точка O находится на перпендикуляре восставленном из середины отрезка AC (теорема 17), следовательно, AO = CO.
Точка O находится на перпендикуляре, восставленном из середины отрезка AB, следовательно, AO = BO.
Откуда BO = CO, т. е. точка O находится на равном расстоянии от концов отрезка BC, следовательно, она находится на перпендикуляре FO, восставленном из середины отрезка BC (ЧТД).
Точка O называется центром описанного круга .
Теорема 33 . Биссектрисы трех углов треугольника пересекаются в одной точке.
Даны линии AO и BO — биссектрисы углов A и B треугольника ABC и точка O (черт. 56) их точка пересечения, следовательно,
∠ BAO = ∠ CAO, ∠ ABO = ∠ CBO.
Требуется доказать, что линия OC будет тоже биссектрисой угла C.
Доказательство . Опустим из точки O перпендикуляры OD, OE, OF на стороны треугольника.
Из того, что AO биссектриса угла A, следует (теорема 31), что
Из того, что BO биссектриса угла B, следует, что
Треугольники CFO и CDO равны, как прямоугольные треугольники, имеющие по равному катету DO и FO и гипотенузе CO (теорема 29), откуда
Следовательно, прямая CO есть биссектриса угла BCA (ЧТД).
Видео:№133. Докажите, что если биссектриса треугольника совпадает с его высотой, то треугольникСкачать
Презентация по геометрии на тему «Второй признак равенства треугольников»
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
«Актуальность создания школьных служб примирения/медиации в образовательных организациях»
Свидетельство и скидка на обучение каждому участнику
Самые массовые международные дистанционные
Школьные Инфоконкурсы 2022
33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»
Описание презентации по отдельным слайдам:
Второй признак равенства треугольников
Какая фигура называется треугольником? Какие треугольники называются равными? Как можно узнать, равны ли данные треугольники? Какие элементы достаточно рассмотреть для доказательства равенства треугольников?
Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Второй признак равенства треугольников. Если сторона и два прилежащие к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Тест: 1. Для доказательства равенства треугольников АВС и MNK достаточно доказать, что: а) АС = MN; б) ∠C = ∠N; в) BC = MK. 2. Для доказательства равенства треугольников АСВ и EDF достаточно доказать, что: а) AC = FE; б) ∠C = ∠E; в) ∠A = ∠F. 3. Чтобы доказать равенство равносторонних треугольников АВС и MNK, достаточно доказать, что: а) ∠А = ∠М; б) АВ = МN; в) PABC = PMNK. 4. Чтобы доказать равенство двух равнобедренных треугольника TOS и DEF с основаниями TS и DF, достаточно доказать, что: а) ∠О = ∠Е; б) TS = DF и ∠Т = ∠D; в) TS = DF. 5. Выберите верное утверждение: а) ВС = КN; б) АВ = КN; в) ВС = NM. C A B K N M A B C F D E A B C M N K
Ответы: 1.в) 2.б) 3.б) 4.б) 5.а)
Задача № 1. Отрезки AB и CD пересекаются в точке O. Докажите равенство треугольников ACO и DOB если известно, что угол ACO равен углу DBO и BO=CO.
Решение: Рассмотрим ∆ ACO и ∆ DBO: BO=CO (по условию)
Отрезки AC и BD пересекаются в точке O. Докажите равенство треугольников BAO и DCO, если известно, что угол BAO равен углу DCO, AO = CO. Задача № 2.
Решение: Рассмотрим ∆ BAO и ∆ DCO. AO = CO (по условию)
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 958 человек из 79 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 310 человек из 70 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 679 человек из 74 регионов
Ищем педагогов в команду «Инфоурок»
Видео:Признаки равенства треугольников. 7 класс.Скачать
Дистанционные курсы для педагогов
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 552 906 материалов в базе
Другие материалы
- 30.11.2015
- 463
- 1
- 30.11.2015
- 466
- 1
- 30.11.2015
- 1297
- 13
- 30.11.2015
- 650
- 1
- 30.11.2015
- 316
- 0
- 30.11.2015
- 577
- 0
- 30.11.2015
- 598
- 0
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 30.11.2015 5126
- PPTX 149 кбайт
- 5 скачиваний
- Оцените материал:
Настоящий материал опубликован пользователем Козулина Александра Вячеславовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 6 лет и 2 месяца
- Подписчики: 1
- Всего просмотров: 66173
- Всего материалов: 8
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:Параллельные прямые | Математика | TutorOnlineСкачать
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
У 76% российских учителей оклад ниже МРОТ
Время чтения: 2 минуты
В Госдуме предложили ввести пост уполномоченного по правам учителей
Время чтения: 2 минуты
Петербургская учительница уволилась после чтения на уроке Введенского и Хармса
Время чтения: 3 минуты
Минобрнауки подготовит государственный рейтинг университетов
Время чтения: 1 минута
Полный перевод школ на дистанционное обучение не планируется
Время чтения: 1 минута
Онлайн-семинар о развитии управляющих функций мозга ребенка
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.