Рассмотрим еще одну задачу на подобие треугольников.
Основания BC и AD трапеции ABCD равны соответственно 9 и 36, BD=18. Доказать, что треугольники CBD и BDA подобны.
Дано : ABCD — трапеция, AD ∥ BC,
Рассмотрим треугольники и BDA.
1) ∠CBD=∠BDA (как внутренние накрест лежащие при AD ∥ BC и секущей BD)
Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
Узнать ещё
Знание — сила. Познавательная информация
Видео:Задание 25 Подобные треугольники в трапеции. Второй признак подобияСкачать
Подобные треугольники в трапеции
Рассмотрим базовые задачи на подобные треугольники в трапеции.
I. Точка пересечения диагоналей трапеции — вершина подобных треугольников.
Рассмотрим треугольники AOD и COB.
Визуализация облегчает решение задач на подобие. Поэтому подобные треугольники в трапеции выделим разными цветами.
1) ∠AOD= ∠ COB (как вертикальные);
2) ∠DAO= ∠ BCO (как внутренние накрест лежащие при AD ∥ BC и секущей AC).
Следовательно, треугольники AOD и COB подобны (по двум углам).
Из подобия треугольников следует пропорциональность соответствующих сторон:
Одна из диагоналей трапеции равна 28 см и делит другую диагональ на отрезки длиной 5 см и 9 см. Найти отрезки, на которые точка пересечения диагоналей делит первую диагональ.
AO=9 см, CO=5 см, BD=28 см. BO =?, DO- ?
Доказываем подобие треугольников AOD и COB. Отсюда
Выбираем нужные отношения:
Пусть BO=x см, тогда DO=28-x см. Следовательно,
BO=10 см, DO=28-10=18 см.
Ответ: 10 см, 18 см.
Известно, что О — точка пересечения диагоналей трапеции ABCD (AD ∥ BC). Найти длину отрезка BO, если AO:OC=7:6 и BD=39 см.
Аналогичн0, доказываем подобие треугольников AOD и COB и
Пусть BO=x см, тогда DO=39-x см. Таким образом,
II. Продолжения боковых сторон трапеции пересекаются в точке.
Аналогично задаче I, рассмотрим треугольники AFD и BFC:
2) ∠ DAF= ∠ CBF (как соответственные углы при BC ∥ AD и секущей AF).
Следовательно, треугольники AFD и BFC подобны (по двум углам).
Из подобия треугольников следует пропорциональность соответствующих сторон:
Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке F. Меньшее основание BC равно 4 см, BF=5 см, AB=15 см. Найти большее основание трапеции.
Доказываем, треугольники AFD и BFC — подобны.
В следующий раз рассмотрим задачи на отношение площадей подобных треугольников.
Видео:Задача 15 ОГЭ: подобные треугольники в трапецииСкачать
Трапеция
Определения
Трапеция – это выпуклый четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.
Параллельные стороны трапеции называются её основаниями, а две другие стороны – боковыми сторонами.
Высота трапеции – это перпендикуляр, опущенный из любой точки одного основания к другому основанию.
Теоремы: свойства трапеции
1) Сумма углов при боковой стороне равна (180^circ) .
2) Диагонали делят трапецию на четыре треугольника, два из которых подобны, а два другие – равновелики.
Доказательство
1) Т.к. (ADparallel BC) , то углы (angle BAD) и (angle ABC) – односторонние при этих прямых и секущей (AB) , следовательно, (angle BAD +angle ABC=180^circ) .
2) Т.к. (ADparallel BC) и (BD) – секущая, то (angle DBC=angle BDA) как накрест лежащие.
Также (angle BOC=angle AOD) как вертикальные.
Следовательно, по двум углам (triangle BOC sim triangle AOD) .
Определение
Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.
Теорема
Средняя линия трапеции параллельна основаниям и равна их полусумме.
Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.
1) Докажем параллельность.
Проведем через точку (M) прямую (MN’parallel AD) ( (N’in CD) ). Тогда по теореме Фалеса (т.к. (MN’parallel ADparallel BC, AM=MB) ) точка (N’) — середина отрезка (CD) . Значит, точки (N) и (N’) совпадут.
2) Докажем формулу.
Проведем (BB’perp AD, CC’perp AD) . Пусть (BB’cap MN=M’, CC’cap MN=N’) .
Тогда по теореме Фалеса (M’) и (N’) — середины отрезков (BB’) и (CC’) соответственно. Значит, (MM’) – средняя линия (triangle ABB’) , (NN’) — средняя линия (triangle DCC’) . Поэтому: [MM’=dfrac12 AB’, quad NN’=dfrac12 DC’]
Т.к. (MNparallel ADparallel BC) и (BB’, CC’perp AD) , то (B’M’N’C’) и (BM’N’C) – прямоугольники. По теореме Фалеса из (MNparallel AD) и (AM=MB) следует, что (B’M’=M’B) . Значит, (B’M’N’C’) и (BM’N’C) – равные прямоугольники, следовательно, (M’N’=B’C’=BC) .
[MN=MM’+M’N’+N’N=dfrac12 AB’+B’C’+dfrac12 C’D=] [=dfrac12 left(AB’+B’C’+BC+C’Dright)=dfrac12left(AD+BCright)]
Теорема: свойство произвольной трапеции
Середины оснований, точка пересечения диагоналей трапеции и точка пересечения продолжений боковых сторон лежат на одной прямой.
Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.
1) Докажем, что точки (P) , (N) и (M) лежат на одной прямой.
Проведем прямую (PN) ( (P) – точка пересечения продолжений боковых сторон, (N) – середина (BC) ). Пусть она пересечет сторону (AD) в точке (M) . Докажем, что (M) – середина (AD) .
Рассмотрим (triangle BPN) и (triangle APM) . Они подобны по двум углам ( (angle APM) – общий, (angle PAM=angle PBN) как соответственные при (ADparallel BC) и (AB) секущей). Значит: [dfrac=dfrac]
Рассмотрим (triangle CPN) и (triangle DPM) . Они подобны по двум углам ( (angle DPM) – общий, (angle PDM=angle PCN) как соответственные при (ADparallel BC) и (CD) секущей). Значит: [dfrac=dfrac]
Отсюда (dfrac=dfrac) . Но (BN=NC) , следовательно, (AM=DM) .
2) Докажем, что точки (N, O, M) лежат на одной прямой.
Пусть (N) – середина (BC) , (O) – точка пересечения диагоналей. Проведем прямую (NO) , она пересечет сторону (AD) в точке (M) . Докажем, что (M) – середина (AD) .
(triangle BNOsim triangle DMO) по двум углам ( (angle OBN=angle ODM) как накрест лежащие при (BCparallel AD) и (BD) секущей; (angle BON=angle DOM) как вертикальные). Значит: [dfrac=dfrac]
Аналогично (triangle CONsim triangle AOM) . Значит: [dfrac=dfrac]
Отсюда (dfrac=dfrac) . Но (BN=CN) , следовательно, (AM=MD) .
Определения
Трапеция называется прямоугольной, если один из ее углов – прямой.
Трапеция называется равнобедренной, если ее боковые стороны равны.
Теоремы: свойства равнобедренной трапеции
1) У равнобедренной трапеции углы при основании равны.
2) Диагонали равнобедренной трапеции равны.
3) Два треугольника, образованные диагоналями и основанием, являются равнобедренными.
Доказательство
1) Рассмотрим равнобедренную трапецию (ABCD) .
Из вершин (B) и (C) опустим на сторону (AD) перпендикуляры (BM) и (CN) соответственно. Так как (BMperp AD) и (CNperp AD) , то (BMparallel CN) ; (ADparallel BC) , тогда (MBCN) – параллелограмм, следовательно, (BM = CN) .
Рассмотрим прямоугольные треугольники (ABM) и (CDN) . Так как у них равны гипотенузы и катет (BM) равен катету (CN) , то эти треугольники равны, следовательно, (angle DAB = angle CDA) .
2)
Т.к. (AB=CD, angle A=angle D, AD) – общая, то по первому признаку (triangle ABD=triangle ACD) . Следовательно, (AC=BD) .
3) Т.к. (triangle ABD=triangle ACD) , то (angle BDA=angle CAD) . Следовательно, треугольник (triangle AOD) – равнобедренный. Аналогично доказывается, что и (triangle BOC) – равнобедренный.
Теоремы: признаки равнобедренной трапеции
1) Если у трапеции углы при основании равны, то она равнобедренная.
2) Если у трапеции диагонали равны, то она равнобедренная.
Доказательство
Рассмотрим трапецию (ABCD) , такую что (angle A = angle D) .
Достроим трапецию до треугольника (AED) как показано на рисунке. Так как (angle 1 = angle 2) , то треугольник (AED) равнобедренный и (AE = ED) . Углы (1) и (3) равны как соответственные при параллельных прямых (AD) и (BC) и секущей (AB) . Аналогично равны углы (2) и (4) , но (angle 1 = angle 2) , тогда (angle 3 = angle 1 = angle 2 = angle 4) , следовательно, треугольник (BEC) тоже равнобедренный и (BE = EC) .
В итоге (AB = AE — BE = DE — CE = CD) , то есть (AB = CD) , что и требовалось доказать.
2) Пусть (AC=BD) . Т.к. (triangle AODsim triangle BOC) , то обозначим их коэффициент подобия за (k) . Тогда если (BO=x) , то (OD=kx) . Аналогично (CO=y Rightarrow AO=ky) .
Т.к. (AC=BD) , то (x+kx=y+ky Rightarrow x=y) . Значит (triangle AOD) – равнобедренный и (angle OAD=angle ODA) .
Таким образом, по первому признаку (triangle ABD=triangle ACD) ( (AC=BD, angle OAD=angle ODA, AD) – общая). Значит, (AB=CD) , чтд.
🎬 Видео
Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие ТреугольниковСкачать
Подобие треугольников. Вся тема за 9 минут | ОГЭ по математике | Молодой РепетиторСкачать
Подобие треугольников (ч.2) | Математика | TutorOnlineСкачать
Задача на подобие треугольников. А ты сможешь решить? | TutorOnline | МатематикаСкачать
Подобие треугольников. Трапеция.Скачать
Как доказать У равнобедренной трапеции углы при основаниях равны и диагонали равныСкачать
Задание 25 Первый признак подобия треугольников в равнобокой трапецииСкачать
8 класс, 22 урок, Первый признак подобия треугольниковСкачать
Решение задач на тему "Подобные треугольники". 8 классСкачать
Средняя линия треугольника и трапеции. 8 класс.Скачать
Подобные треугольники в трапеции. Площадь трапеции. Геометрия 8-9 классСкачать
Задача на подобие треугольников 1частьСкачать
Третий признак подобия треугольников. Доказательство. 8 класс.Скачать
Подобные треугольники, трапеции и окружностьСкачать
Задание 25 Первый признак подобия ТрапецияСкачать
ОГЭ математика. Геометрия. 2 часть. Трапеция. Подобие треугольников.Скачать
Средняя линия. Теорема о средней линии треугольникаСкачать