Как определить, что треугольник — равносторонний? Это можно сделать, использовав либо определение, либо признаки равностороннего треугольника.
По определению, треугольник равносторонний, если все его стороны равны.
Признаки равностороннего треугольника
1) Если у треугольника все углы равны, то этот треугольник — равносторонний.
то треугольник ABC — равносторонний.
2) Если у треугольника совпадают проведённые к двум сторонам
— медиана и высота
— биссектриса и высота
— медиана и биссектриса,
то этот треугольник — равносторонний.
Если AK и BF (или AK и CD, или BF и CD)
— медианы и высоты
— или биссектрисы и высоты
— или медианы и биссектрисы,
то треугольник ABC — равносторонний.
3) Если у треугольника центр вписанной и описанной окружностей совпадают, то этот треугольник — равносторонний.
Если точка O для треугольника ABC —
- Свойства равностороннего треугольника: теория и пример задачи
- Определение равностороннего треугольника
- Свойства равностороннего треугольника
- Свойство 1
- Свойство 2
- Свойство 3
- Свойство 4
- Свойство 5
- Свойство 6
- Пример задачи
- Треугольник равносторонний: свойства, признаки, площадь, периметр
- Типы треугольников
- Треугольник равносторонний
- Признаки и свойства
- Вписанные и описанные окружности
- Вычисление высоты, периметра и площади
- Построение
- 🔥 Видео
Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать
Свойства равностороннего треугольника: теория и пример задачи
В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.
Видео:№110. Докажите, что если медиана треугольника совпадает с его высотой, то треугольникСкачать
Определение равностороннего треугольника
Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.
Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.
Видео:Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.Скачать
Свойства равностороннего треугольника
Свойство 1
В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.
Свойство 2
В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.
CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.
Свойство 3
В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.
Свойство 4
Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.
Свойство 5
Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.
- R – радиус описанной окружности;
- r – радиус вписанной окружности;
- R = 2r.
Свойство 6
В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:
1. Высоту/медиану/биссектрису:
2. Радиус вписанной окружности:
3. Радиус описанной окружности:
4. Периметр:
5. Площадь:
Видео:№162. На рисунке 92 треугольник ADE равнобедренный, DE — основание. Докажите, что: а) если BD=CE, тоСкачать
Пример задачи
Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.
Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:
Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать
Треугольник равносторонний: свойства, признаки, площадь, периметр
В школьном курсе геометрии огромное количество времени уделяется изучению треугольников. Ученики вычисляют углы, строят биссектрисы и высоты, выясняют, чем фигуры отличаются друг от друга, и как проще всего найти их площадь и периметр. Кажется, что это никак не пригодится в жизни, но иногда все-таки полезно узнать, например, как определить, что треугольник равносторонний или тупоугольный. Как же это сделать?
Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать
Типы треугольников
Три точки, которые не лежат на одной прямой, и отрезки, которые их соединяют. Кажется, что эта фигура — самая простая. Какими могут быть треугольники, если у них всего три стороны? На самом деле вариантов довольно большое количество, и некоторым из них уделяется особое внимание в рамках школьного курса геометрии. Правильный треугольник — равносторонний, то есть все его углы и стороны равны. Он обладает рядом примечательных свойств, о которых речь пойдет дальше.
У равнобедренного равны только две стороны, и он также довольно интересен. У прямоугольного и тупоугольного треугольников, как несложно догадаться, соответственно, один из углов прямой или тупой. При этом они также могут равнобедренными.
Существует и особый вид треугольника, называемый египетским. Его стороны равны 3, 4 и 5 единицам. При этом он является прямоугольным. Считается, что такой треугольник активно использовался египетскими землемерами и архитекторами для построения прямых углов. Есть мнение, что с его помощью были возведены знаменитые пирамиды.
И все-таки все вершины треугольника могут лежать на одной прямой. В этом случае он будет называться вырожденным, в то время как все остальные — невырожденными. Именно они и являются одним из предметов изучения геометрии.
Видео:№116. Докажите, что в равностороннем треугольнике все углы равны.Скачать
Треугольник равносторонний
Разумеется, правильные фигуры вызывают всегда наибольший интерес. Они кажутся более совершенными, более изящными. Формулы вычисления их характеристик зачастую проще и короче, чем для обычных фигур. Это относится и к треугольникам. Неудивительно, что при изучении геометрии им уделяется достаточно много внимания: школьников учат отличать правильные фигуры от остальных, а также рассказывают о некоторых их интересных характеристиках.
Видео:ОГЭ Задание 25 Доказать что треугольник равностороннийСкачать
Признаки и свойства
Как нетрудно догадаться из названия, каждая сторона равностороннего треугольника равна двум другим. Кроме того, он обладает рядом признаков, благодаря которым можно определить, правильная ли фигура или нет.
- все его углы равны, их величина составляет 60 градусов;
- биссектрисы, высоты и медианы, проведенные из каждой вершины, совпадают;
- правильный треугольник имеет 3 оси симметрии, он не изменяется при повороте на 120 градусов.
- центр вписанной окружности также является центром описанной окружности и точкой пересечения медиан, биссектрис, высот и срединных перпендикуляров.
Если наблюдается хотя бы один из вышеперечисленных признаков, то треугольник — равносторонний. Для правильной фигуры справедливы все упомянутые утверждения.
Все треугольники обладают рядом примечательных свойств. Во-первых, средняя линия, то есть отрезок, делящий две стороны пополам и параллельный третьей, равна половине основания. Во-вторых, сумма всех углов этой фигуры всегда равна 180 градусам. Кроме того, в треугольниках наблюдается еще одна любопытная взаимосвязь. Так, против большей стороны лежит больший угол и наоборот. Но это, конечно, к равностороннему треугольнику отношения не имеет, ведь у него все углы равны.
Видео:№118. На основании ВС равнобедренного треугольника ABC отмечены точки М и N так, что BM=CN. ДокажитеСкачать
Вписанные и описанные окружности
Нередко в курсе геометрии учащиеся также изучают то, как фигуры могут взаимодействовать друг с другом. В частности, изучаются окружности, вписанные в многоугольники или описанные около них. О чем идет речь?
Вписанной называют такую окружность, для которой все стороны многоугольника являются касательными. Описанной — ту, которая имеет точки соприкосновения со всеми углами. Для каждого треугольника всегда можно построить как первую, так и вторую окружность, но только одну каждого вида. Доказательства двух этих
Помимо вычисления параметров самих треугольников, некоторые задачи также подразумевают расчет радиусов этих окружностей. И формулы применительно к
равностороннему треугольнику выглядят следующим образом:
где r — радиус вписанной окружности, R — радиус описанной окружности, a — длина стороны треугольника.
Видео:№133. Докажите, что если биссектриса треугольника совпадает с его высотой, то треугольникСкачать
Вычисление высоты, периметра и площади
Основные параметры, вычислением которых занимаются школьники во время изучения геометрии, остаются неизменными практически для любых фигур. Это периметр, площадь и высота. Для простоты расчетов существуют различные формулы.
P = 3a = 3√ ̅3R = 6√ ̅3r, где a — сторона правильного треугольника, R — радиус описанной окружности, r — вписанной.
h = (√ ̅3/2)*a, где a — длина стороны.
Наконец, формула площади равностороннего треугольника выводится из стандартной, то есть произведения половины основания на его высоту.
S = (√ ̅3/4)*a 2 , где a — длина стороны.
Также эта величина может быть вычислена через параметры описанной или вписанной окружности. Для этого также существуют специальные формулы:
S = 3√ ̅3r 2 = (3√ ̅3/4)*R 2 , где r и R — соответственно радиусы вписанной и описанной окружностей.
Видео:Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать
Построение
Еще один интересный тип задач, касающийся в том числе и треугольников, связан с необходимостью начертить ту или иную фигуру, используя минимальный набор
Для того чтобы построить правильный треугольник с помощью только этих приспособлений, необходимо выполнить несколько шагов.
- Нужно начертить окружность с любым радиусом и с центром в произвольно взятой точке А. Ее необходимо отметить.
- Далее нужно провести прямую через эту точку.
- Пересечения окружности и прямой необходимо обозначить как В и С. Все построения должны проводиться с максимально возможной точностью.
- Далее надо построить еще одну окружность с тем же радиусом и центром в точке С или дугу с соответствующими параметрами. Места пересечения будут обозначены как D и F.
- Точки B, F, D необходимо соединить отрезками. Равносторонний треугольник построен.
Решение подобных задач обычно представляет для школьников проблему, но это умение может пригодиться и в обычной жизни.
🔥 Видео
Равнобедренный треугольник. 7 класс.Скачать
Признаки равенства треугольников. 7 класс.Скачать
Геометрия. 7 класс. Теоремы. Т5. Первое свойство равнобедренного треугольника.Скачать
Свойства равнобедренного треугольника. 7 класс.Скачать
№225. Докажите, что каждый угол равностороннего треугольника равен 60°.Скачать
№135. Докажите, что если сторона одного равностороннего треугольника равна стороне другогоСкачать
Геометрия Докажите, что если в треугольнике две высоты равны, то он равнобедренный.Скачать
Геометрия Равносторонний треугольникСкачать
№261. Докажите, что в равнобедренном треугольнике высоты, проведенные из вершин основания, равны.Скачать