Длина средней линии трапеции треугольника

Трапеция, Средняя линия трапеции, треугольник

Параллельные стороны трапеции называются её основаниями, а те стороны, которые не параллельны, называются боковыми сторонами. Если боковые стороны равны, то такая трапеция является равнобедренной. Расстояние между основаниями называется высотой трапеции.

Средняя Линия Трапеции

Средняя линия — это отрезок, соединяющий середины боковых сторон трапеции. Средняя линия трапеции параллельна её основаниям.

Длина средней линии трапеции треугольника

MN средняя линия, AB и CD — основания, AD и BC — боковые стороны

Основная задача: Доказать, что средняя линия трапеции делит пополам отрезок, концы которого лежат в середине оснований трапеции.

Средняя Линия Треугольника

Отрезок, соединяющий середины двух сторон треугольника, называется средней линией треугольника. Она параллельна третьей стороне и её длина равна половине длины третьей стороны.
Теорема: Если прямая, пересекающая середину одной стороны треугольника, параллельна другой стороне данного треугольника, то она делит третью сторону пополам.

Длина средней линии трапеции треугольника

AM = MC and BN = NC =>

Применение свойств средней линии треугольника и трапеции

Деление отрезка на определённое количество равных частей.
Задача: Разделить отрезок AB на 5 равных частей.
Решение:
Пусть p это случайный луч, у которого начало это точка А, и который не лежит на прямой AB. Мы последовательно откладываем 5 равных сегментов на p AA1 = A1A2 = A2A3 = A3A4 = A4A5
Мы соединяем A5 с B и проводим такие прямые через A4, A3, A2 и A1, которые параллельны A5B. Они пересекают AB соответственно в точках B4, B3, B2 и B1. Эти точки делят отрезок AB на 5 равных частей. Действительно, из трапеции BB3A3A5 мы видим, что BB4 = B4B3. Таким же образом, из трапеции B4B2A2A4 получаем B4B3 = B3B2

Длина средней линии трапеции треугольника

В то время как из трапеции B3B1A1A3, B3B2 = B2B1.
Тогда из B2AA2 следует, что B2B1 = B1A. В заключении получаем :
AB1 = B1B2 = B2B3 = B3B4 = B4B
Ясно, что для разделения отрезка AB на другое количество равных частей, нам нужно проецировать то же самое количество равных сегментов на луч p. И далее продолжать вышеописанным способом.

Видео:Теорема о средней линии трапецииСкачать

Теорема о средней линии трапеции

Длина средней линии трапеции треугольника

Ключевые слова: треугольник, отрезок, средняя линия, длина отрезка, средняя линия треугольника, средняя линия трапеции, средняя линия четырехугольника

Отрезок, соединяющий середины противолежащих сторон четырехугольника, называется средней линией четырехугольника.

Если в выпуклом четырехугольнике прямая, проходящая через середины двух противоположных сторон, образует равные углы с диагоналями четырехугольника, то диагонали равны.

Средняя линия треугольника — это отрезок, соединяющий середины двух его сторон.

Средняя линия треугольника параллельна третьей стороне, а ее длина равна половине длины этой стороны.

Отрезок, соединяющий середины боковых сторон трапеции, называется средней линией трапеции.

Длина средней линии трапеции треугольника
См. также:
Биссектриса, Медиана, Прямоугольный треугольник, Равнобедренный треугольник, Равносторонний треугольник

Видео:Средняя линия. Теорема о средней линии треугольникаСкачать

Средняя линия. Теорема о средней линии треугольника

Средние линии

Длина средней линии трапеции треугольникаСредние линии треугольника
Длина средней линии трапеции треугольникаСредняя линия трапеции
Длина средней линии трапеции треугольникаСредние линии четырехугольников. Теорема Вариньона
Длина средней линии трапеции треугольникаСредние линии тетраэдра

Длина средней линии трапеции треугольника

Видео:Средняя линия треугольника и трапеции. 8 класс.Скачать

Средняя линия треугольника и трапеции. 8 класс.

Средние линии треугольника

Определение . Средней линией треугольника называют отрезок, соединяющий середины двух сторон треугольника (рис. 1).

Длина средней линии трапеции треугольника

На рисунке 1 средней линией является отрезок DE .

Утверждение 1 . Средняя линия треугольника параллельна не пересекающейся с ней стороне треугольника и равна половине этой стороны.

Доказательство . Рассмотрим произвольный треугольник ABC и обозначим буквой D середину стороны AB (рис. 2). Проведем через точку D до пересечения с прямой BC прямую, параллельную прямой AC . Обозначим буквой E точку пересечения прямых DE и BC .

Длина средней линии трапеции треугольника

Поскольку AD = DB , а прямые AC и DE параллельны, то выполнены все условия теоремы Фалеса, и можно заключить, что выполнено равенство: CE = EB . Отсюда вытекает, что точка E является серединой стороны CB , а отрезок DE является средней линией треугольника.

Первую часть утверждения 1 мы доказали.

Для того, чтобы доказать вторую часть утверждения 1, заметим, что в любом треугольнике можно провести три средних линии – отрезки DE , EF и FD (рис.3).

Длина средней линии трапеции треугольника

Но поскольку AF = FC , то отсюда вытекает равенство

Длина средней линии трапеции треугольника

что и требуется доказать.

Доказательство утверждения 1 закончено.

  • Три средних линии делят треугольник на 4 равных треугольника ADF , DBE , ECF , DEF (рис. 4).
  • Каждый из четырёх треугольников ADF , DBE , ECF , DEF подобен треугольнику ABC с коэффициентом подобия 0,5 .

Длина средней линии трапеции треугольника

Видео:ОГЭ ЗАДАНИЕ 18 НАЙТИ ДЛИНУ СРЕДНЕЙ ЛИНИИ ТРАПЕЦИИСкачать

ОГЭ ЗАДАНИЕ 18 НАЙТИ ДЛИНУ СРЕДНЕЙ ЛИНИИ ТРАПЕЦИИ

Средняя линия трапеции

Напомним, что трапецией трапецией называют четырёхугольник, у которого две стороны параллельны, а две другие – не параллельны.

Параллельные стороны трапеции называют основаниями , а непараллельные стороны – боковыми сторонами трапеции.

Отрезки, соединяющие противоположные вершины трапеции, называют диагоналями трапеции.

Определение . Средней линией трапеции называют отрезок, соединяющий середины боковых сторон трапеции (рис. 5).

Длина средней линии трапеции треугольника

Длина средней линии трапеции треугольника

На рисунке 5 средней линией трапеции является отрезок EF .

Утверждение 2 . Средняя линия трапеции параллельна основаниям трапеции и равна половине суммы этих оснований.

Длина средней линии трапеции треугольника

Длина средней линии трапеции треугольника

Доказательство . Проведем через вершину B и середину боковой стороны F трапеции прямую линию (рис. 6). Обозначим точку пересечения прямых BF и AD буквой G . Рассмотрим треугольники BCF и FDG . У этих треугольников стороны CF и FD равны, поскольку точка F – середина стороны CD . Углы BCF и FDG равны, поскольку они являются внутренними накрест лежащими углами, образованными при пересечении параллельных прямых BC и AD с секущей CD . Углы BFC и DFG равны, поскольку они являются вертикальными. Тем самым выполнены все условия признака равенства треугольников «По стороне и прилежащим к ней углам», и можно заключить, что треугольники BCF и FDG равны. Из равенства треугольников BCF и FDG следует равенство отрезков BF и FG , откуда вытекает, что отрезок EF является средней линией треугольника ABG . Поэтому

Длина средней линии трапеции треугольника

Длина средней линии трапеции треугольника

что и требовалось доказать.

Задача 1 . Доказать, что средняя линия трапеции делит пополам любой отрезок с концами на основаниях трапеции.

Длина средней линии трапеции треугольника

Длина средней линии трапеции треугольника

Решение . Пусть ABCD – трапеция, EF – её средняя линия, LM – указанный отрезок (рис.7). Поскольку AE = EB , то, в силу теоремы Фалеса, выполнено равенство: LN = NM , что и требовалось доказать.

Задача 2 . Доказать, что отрезок, который диагонали трапеции высекают на средней линии трапеции, равен половине разности оснований трапеции.

Длина средней линии трапеции треугольника

Длина средней линии трапеции треугольника

Решение . Пусть ABCD – трапеция, EF – её средняя линия, KL – указанный отрезок (рис.8). В соответствии с задачей 1 можем заключить, что точка K – середина отрезка AC , а точка L – середина отрезка BD . Поэтому отрезок EK – средняя линия треугольника BAC , а отрезок EL – средняя линия треугольника ABD . В силу утверждения 1 выполнены равенства:

Длина средней линии трапеции треугольника

Длина средней линии трапеции треугольника

что и требовалось доказать.

Утверждение 3 . Прямая, проходящая через середины оснований трапеции, проходит через точку пересечения боковых сторон трапеции.

Длина средней линии трапеции треугольника

Доказательство . Пусть K и L – середины оснований BC и AD трапеции ABCD соответственно (рис.9). Обозначим буквой M точку пересечения боковых сторон AB и CD . Проведем через точки M и K прямую и обозначим точку пересечения этой прямой с основанием AD символом N . Докажем, что точки N и L совпадают. Для этого заметим, что треугольник BMK подобен треугольнику AMN . Следовательно, выполнено равенство:

Длина средней линии трапеции треугольника

Длина средней линии трапеции треугольника

Из этих соотношений получаем:

Длина средней линии трапеции треугольника

Длина средней линии трапеции треугольника

откуда вытекает, что точки N и L совпадают. Доказательство завершено.

Почти те же рассуждения позволяют доказать следующий факт, который мы предоставляем читателю в качестве упражнения.

Утверждение 4 . Прямая, проходящая через точку пересечения диагоналей и середину одного из оснований трапеции, проходит через середину другого основания трапеции.

Следствие . Точка пересечения диагоналей, середины оснований и точка пересечения боковых сторон трапеции лежат на одной прямой.

Видео:Геометрия 8. Средняя линия трапеции. Средняя линия треугольника. Задачи.Скачать

Геометрия 8. Средняя линия трапеции. Средняя линия треугольника. Задачи.

Средние линии четырехугольника. Теорема Вариньона

Определение . Средней линией четырехугольника называют отрезок, соединяющий середины непересекающихся сторон четырёхугольника.

Поскольку у каждого четырехугольника имеются две пары непересекающихся сторон, то у каждого четырехугольника имеются две средних линии (рис.10).

Длина средней линии трапеции треугольника

Длина средней линии трапеции треугольника

На рисунке 10 средние линии – это отрезки EF и GH .

Замечание 1 . Приведенное определение средней линии относится не только к плоским четырехугольникам, но и к «пространственным четырехугольникам» (рис.11). «Пространственным четырехугольником» мы называем замкнутую ломаную линию из 4 звеньев без самопересечений, не лежащую в одной плоскости.

Длина средней линии трапеции треугольника

На рисунке 11 изображен «пространственный четырёхугольник» ABCD , средними линиями которого являются отрезки EF и GH .

Замечание 2 . Несмотря на то, что трапеция является четырехугольником, принято средней линией трапеции называть только отрезок, соединяющий середины её боковых сторон.

Замечание 3 . В данном разделе справочника не рассматриваются невыпуклые четырёхугольники и четырёхугольники с самопересечениями.

Теорема Вариньона . Середины сторон произвольного плоского или «пространственного» четырёхугольника являются вершинами параллелограмма параллелограмма .

Доказательство . Рассмотрим плоский четырёхугольник ABCD , изображенный на рисунке 12. Точки E, G, F, H – середины сторон, отрезок AC – диагональ четырёхугольника.

Длина средней линии трапеции треугольника

Длина средней линии трапеции треугольника

Поскольку отрезок EG – средняя линия треугольника ABC , то отрезок EG параллелен диагонали AC и равен её половине. Поскольку отрезок FH – средняя линия треугольника CDA , то отрезок FH параллелен диагонали AC и равен её половине. Таким образом, в четырёхугольнике EGFH противоположные стороны EG и FH равны и параллельны. В силу признака параллелограмма признака параллелограмма признака параллелограмма отсюда вытекает, что четырёхугольник EGFH – параллелограмм, что и требовалось доказать.

Замечание 4 . В случае «пространственного четырёхугольника» ABCD доказательство остаётся тем же (рис. 13).

Длина средней линии трапеции треугольника

Утверждение 5 . Средние линии произвольного четырёхугольника пересекаются и в точке пересечения делятся пополам (рис. 14).

Длина средней линии трапеции треугольника

Длина средней линии трапеции треугольника

Утверждение 6 . Рассмотрим произвольный плоский или «пространственный» четырёхугольник ABCD , у которого отрезок EF является одной из средних линий (рис. 15). Тогда будет выполнено векторное равенство:

Длина средней линии трапеции треугольника

Длина средней линии трапеции треугольника

Длина средней линии трапеции треугольника

Длина средней линии трапеции треугольника

Длина средней линии трапеции треугольника

Длина средней линии трапеции треугольника

Длина средней линии трапеции треугольника

что и требовалось доказать.

Следствие . Средняя линия четырёхугольника меньше или равна половине суммы не пересекающих её сторон четырёхугольника, причём равенство достигается лишь в том случае, когда указанные стороны четырёхугольника параллельны.

Другими словами, средняя линия четырёхугольника равна половине суммы не пересекающих её сторон четырёхугольника лишь в том случае, когда этот четырехугольник является трапецией трапецией , а не пересекающие среднюю линию стороны четырёхугольника – основания трапеции.

Видео:Средняя линия треугольникаСкачать

Средняя линия треугольника

Средние линии тетраэдра

Тетраэдром называют произвольную треугольную пирамиду (рис.17).

Длина средней линии трапеции треугольника

У каждого тетраэдра имеется 4 вершины, 4 грани и 6 рёбер, причем все рёбра делятся на 3 пары непересекающихся рёбер . На рисунке 17 каждая пара непересекающихся рёбер выделена отдельным цветом. Каждые два непересекающихся ребра тетраэдра лежат на скрещивающихся прямых скрещивающихся прямых .

Определение . Средней линией (бимедианой) тетраэдра называют отрезок, соединяющий середины двух непересекающихся рёбер тетраэдра.

Длина средней линии трапеции треугольника

У каждого тетраэдра имеется 3 средних линии. Изображённый на рисунке 18 отрезок EF является одной из средних линий тетраэдра.

Утверждение 7 . Все средние линии тетраэдра пересекаются в одной точке и делятся этой точкой пополам.

Доказательство . Выберем какую-нибудь среднюю линию тетраэдра, например, EF и докажем, что любая другая средняя линия тетраэдра проходит через середину отрезка EF . Для этого рассмотрим, например, среднюю линию GH , соединяющую середины рёбер AC и BD , и соединим отрезками точки E, H, F, G (рис.19).

Длина средней линии трапеции треугольника

Заметим, что отрезок EH является средней линией треугольника ADB , поэтому

Длина средней линии трапеции треугольника

Длина средней линии трапеции треугольника

Определение . Точку пересечения средних линий тетраэдра называют центроидом тетраэдра .

Утверждение 8 . Рассмотрим в пространстве декартову систему координат с началом в точке O и произвольный тетраэдр ABCD . Если обозначить буквой M центроид этого тетраэдра (рис. 20), то будет выполнено векторное равенство:

🌟 Видео

8 класс, 49 урок, Средняя линия трапецииСкачать

8 класс, 49 урок, Средняя линия трапеции

8 класс, 25 урок, Средняя линия треугольникаСкачать

8 класс, 25 урок, Средняя линия треугольника

Трапеция. Средняя линия трапеции.Скачать

Трапеция. Средняя линия трапеции.

Геометрия 9 класс (Урок№5 - Средняя линия трапеции.)Скачать

Геометрия 9 класс (Урок№5 - Средняя линия трапеции.)

Геометрия 9 класс. Средняя линия трапецииСкачать

Геометрия 9 класс. Средняя линия трапеции

Найдем длину средней линии трапеции #shortsСкачать

Найдем длину средней линии трапеции #shorts

Геометрия 8. Урок 7 - Средняя линия треугольника и трапецииСкачать

Геометрия 8. Урок 7 - Средняя линия треугольника и трапеции

Теорема о средней линии трапецииСкачать

Теорема о средней линии трапеции

Геометрия. 8 класс. Средняя линия трапеции /15.10.2020/Скачать

Геометрия. 8 класс. Средняя линия трапеции /15.10.2020/

Треугольники №15. Средняя линия. Средняя линия трапеции №17. Равносторонний треугольник. (ОГЭ)Скачать

Треугольники №15. Средняя линия. Средняя линия трапеции №17. Равносторонний треугольник. (ОГЭ)

Урок34. Трапеция Средняя линия трапеции (8 класс)Скачать

Урок34.  Трапеция  Средняя линия трапеции (8 класс)

Почему такая формула у средней линии трапеции?Скачать

Почему такая формула у средней линии трапеции?

88. Средняя линия трапецииСкачать

88. Средняя линия трапеции

Свойство средней линии трапеции | Геометрия 8-9 классыСкачать

Свойство средней линии трапеции | Геометрия 8-9 классы
Поделиться или сохранить к себе: