- Определение
- Формулы
- Радиус вписанной окружности в треугольник
- Радиус описанной окружности около треугольника
- Площадь треугольника
- Периметр треугольника
- Сторона треугольника
- Средняя линия треугольника
- Высота треугольника
- Свойства
- Доказательство
- Длина окружности
- Как найти длину окружности через диаметр
- Как найти длину окружности через радиус
- Как вычислить длину окружности через площадь круга
- Как найти длину окружности через диагональ вписанного прямоугольника
- Как вычислить длину окружности через сторону описанного квадрата
- Как найти длину окружности через стороны и площадь вписанного треугольника
- Как найти длину окружности через площадь и полупериметр описанного треугольника
- Как вычислить длину окружности через сторону вписанного правильного многоугольника
- Задачи для решения
- Как найти длину окружности
- Формула
- Примеры вычисления длины окружности
- Остались вопросы?
- 📹 Видео
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Определение
Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.
На рисунке 1 изображена окружность, описанная около
треугольника и окружность, вписанная в треугольник.
ВD = FC = AE — диаметры описанной около треугольника окружности.
O — центр вписанной в треугольник окружности.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Формулы
Радиус вписанной окружности в треугольник
r — радиус вписанной окружности.
- Радиус вписанной окружности в треугольник,
если известна площадь и все стороны:
Радиус вписанной окружности в треугольник,
если известны площадь и периметр:
Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:
Радиус описанной окружности около треугольника
R — радиус описанной окружности.
- Радиус описанной окружности около треугольника,
если известна одна из сторон и синус противолежащего стороне угла:
Радиус описанной окружности около треугольника,
если известны все стороны и площадь:
Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:
Площадь треугольника
S — площадь треугольника.
- Площадь треугольника вписанного в окружность,
если известен полупериметр и радиус вписанной окружности:
Площадь треугольника вписанного в окружность,
если известен полупериметр:
Площадь треугольника вписанного в окружность,
если известен высота и основание:
Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:
Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:
[ S = fracab cdot sin angle C ]
Периметр треугольника
P — периметр треугольника.
- Периметр треугольника вписанного в окружность,
если известны все стороны:
Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:
Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:
Сторона треугольника
a — сторона треугольника.
- Сторона треугольника вписанного в окружность,
если известны две стороны и косинус угла между ними:
Сторона треугольника вписанного в
окружность, если известна сторона и два угла:
Средняя линия треугольника
l — средняя линия треугольника.
- Средняя линия треугольника вписанного
в окружность, если известно основание:
Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:
Высота треугольника
h — высота треугольника.
- Высота треугольника вписанного в окружность,
если известна площадь и основание:
Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:
[ h = b cdot sin alpha ]
Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:
Видео:Длина окружности. Площадь круга - математика 6 классСкачать
Свойства
- Центр вписанной в треугольник окружности
находится на пересечении биссектрис. - В треугольник, вписанный в окружность,
можно вписать окружность, причем только одну. - Для треугольника, вписанного в окружность,
справедлива Теорема Синусов, Теорема Косинусов
и Теорема Пифагора. - Центр описанной около треугольника окружности
находится на пересечении серединных перпендикуляров. - Все вершины треугольника, вписанного
в окружность, лежат на окружности. - Сумма всех углов треугольника — 180 градусов.
- Площадь треугольника вокруг которого описана окружность, и
треугольника, в который вписана окружность, можно найти по
формуле Герона.
Видео:Длина окружности. Математика 6 класс.Скачать
Доказательство
Около любого треугольника, можно
описать окружность притом только одну.
окружность и треугольник,
которые изображены на рисунке 2.
окружность описана
около треугольника.
- Проведем серединные
перпендикуляры — HO, FO, EO. - O — точка пересечения серединных
перпендикуляров равноудалена от
всех вершин треугольника. - Центр окружности — точка пересечения
серединных перпендикуляров — около
треугольника описана окружность — O,
от центра окружности к вершинам можно
провести равные отрезки — радиусы — OB, OA, OC.
окружность описана около треугольника,
что и требовалось доказать.
Подводя итог, можно сказать, что треугольник,
вписанный в окружность — это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.
Видео:Длина окружности. 9 класс.Скачать
Длина окружности
О чем эта статья:
6 класс, 9 класс, ЕГЭ/ОГЭ
Если вы не знаете, как обозначается длина окружности, то знак окружности выглядит вот так — l
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Видео:Длина окружности. Площадь круга. 6 класс.Скачать
Как найти длину окружности через диаметр
Хорда — это отрезок, который соединяет две точки окружности.
Диаметр — хорда, которая проходит через центр окружности. Формула длины окружности через диаметр:
π— число пи — математическая константа, примерно равная 3,14
d — диаметр окружности
Видео:КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ОПИСАННОЙ ОКОЛО ПРАВИЛЬНОГО ТРЕУГОЛЬНИКА? Примеры | ГЕОМЕТРИЯ 9 классСкачать
Как найти длину окружности через радиус
Радиус окружности — отрезок, который соединяет центр окружности с точкой на окружности. Формула длины окружности через радиус:
π — число пи, примерно равное 3,14
r — радиус окружности
Это две основные формулы для вычисления длины окружности. Ниже мы покажем еще несколько формул, которые вы сможете доказать самостоятельно, пользуясь основными формулами и свойствами геометрических фигур.
Видео:ДЛИНА ОКРУЖНОСТИ и ПЛОЩАДЬ КРУГА 9 класс геометрия АтанасянСкачать
Как вычислить длину окружности через площадь круга
Если вам известна площадь круга, вы также можете узнать длину окружности:
π — число пи, примерно равное 3,14
S — площадь круга
Видео:Длина окружности и площадь кругаСкачать
Как найти длину окружности через диагональ вписанного прямоугольника
Как измерить окружность, если в нее вписан прямоугольник:
π — число пи, примерно равное 3,14
d — диагональ прямоугольника
Видео:Длина окружности. Площадь круга, 6 классСкачать
Как вычислить длину окружности через сторону описанного квадрата
Давайте рассмотрим, как найти длину окружности, если она вписана в квадрат и нам известна сторона квадрата:
π — математическая константа, примерно равная 3,14
a — сторона квадрата
Видео:Длина окружности. Практическая часть. 9 класс.Скачать
Как найти длину окружности через стороны и площадь вписанного треугольника
Можно найти, чему равна длина окружности, если в нее вписан треугольник и известны все три его стороны, а также известна его площадь:
π — математическая константа, она примерно равна 3,14
a — первая сторона треугольника
b — вторая сторона треугольника
c — третья сторона треугольника
S — площадь треугольника
Видео:КАК ИЗМЕРИТЬ ДЛИНУ ОКРУЖНОСТИ? · ФОРМУЛА + примеры · Длина окружности как найти? Математика 6 классСкачать
Как найти длину окружности через площадь и полупериметр описанного треугольника
Можно определить, чему равна длина окружности, если круг вписан в треугольник, и известны следующие параметры: площадь треугольника и его полупериметр.
Периметр — это сумма всех сторон треугольника. Полупериметр равен половине этой суммы, то есть чтобы его найти, вам нужно рассчитать периметр и поделить его на два.
π — математическая константа, примерно равная 3,14
S — площадь треугольника
p — полупериметр треугольника
Видео:Геометрия 9 класс (Урок№23 - Длина окружности.)Скачать
Как вычислить длину окружности через сторону вписанного правильного многоугольника
Разбираемся, как в этом случае измерить окружность. Для этого необходимо посчитать, сколько сторон у многоугольника, а также знать длину стороны многоугольника. Напомним, что у правильного многоугольника все стороны равны, как у квадрата.
Формула вычисления длины окружности:
π — математическая константа, примерно равная 3,14
a — сторона многоугольника
N — количество сторон многоугольника
Видео:№1104. Найдите длину окружности, описанной около: а) правильного треугольника со стороной аСкачать
Задачи для решения
Давайте тренироваться! Двигаемся от простого к сложному:
Задача 1. Найти длину окружности, диаметр которой равен 5 см.
Решение. Итак, нам известен диаметр окружности, значит для вычисления длины заданной окружности берем формулу:
Подставляем туда известные переменные и получается, что длина окружности равна
Задача 2. Чему равна длина окружности, описанной около правильного треугольника со стороною a = 4√3 дм
Решение. Радиус окружности равен Подставим туда наши переменные и получим
Теперь, когда нам известен радиус окружности и есть формула длины окружности через радиус l=2πr, мы можем подставить наши данные и получить решение задачи.
Обучение на курсах по математике поможет закрепить полученные знания на практике.
Видео:Вписанная и описанная окружность - от bezbotvyСкачать
Как найти длину окружности
Видео:Длина дуги окружности. 9 класс.Скачать
Формула
Чтобы найти длину окружности, нужно либо диаметр окружности умножить на $pi approx 3,1415926535 dots$, либо найти удвоенное произведение радиуса и числа $pi$.
То есть нужно воспользоваться одной из формул:
$l=2 pi r text l=pi d$
Здесь $r$ — это радиус заданной окружности, а $d$ — диаметр, $pi approx 3,1415926535 dots$. Радиусом окружности — отрезок, который соединяет центр окружности с точкой окружности. Диаметром называют отрезок, который соединяет две точки окружности и проходит через её центр. Число $pi$ — математическая константа , выражающая отношение длины окружности к длине её диаметра.
Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Примеры вычисления длины окружности
Задание. Найти длину окружности, диаметр которой равен 3 см.
Решение. Для вычисления длины заданной окружности воспользуемся формулой
Подставляя в неё исходные данные, получим:
$l=3 pi approx 3.14 cdot 3=9.42$ (см)
Ответ. $l=3 pi approx 9.42$ (см)
Задание. Найти длину окружности, описанной около правильного треугольника со стороною $a=4 sqrt$ дм.
Решение. Радиус окружности, описанной около правильного треугольника, равен $R=frac<sqrt>$. В нашем случае он будет равен
Для нахождения длины рассматриваемой окружности воспользуемся формулой
Подставляя в нее найденное значение радиуса и значение $pi approx 3.14 ldots$, окончательно получим
$l=2 cdot pi cdot 4 approx 8 cdot 3,14=25,12$ (дм)
Ответ. $l=8 pi approx 25,12$ (дм)
Видео:№1105. Найдите длину окружности, вписанной: а) в квадрат со стороной а; б) в равнобедренныйСкачать
Остались вопросы?
Здесь вы найдете ответы.
Площадь круга (S) рассчитывается путем умножения числа Пи на длину его радиуса (R), возведенную в квадратную степень (S = ПR²). Из указанного равенства можно выразить радиус:
Если избавиться от квадратной степени, то получится:
Длина окружности (L) рассчитывается путем умножения числа Пи на длину радиуса, и последующего умножения на два полученного в результате числа:
Если R = √(S/П), то L = 2П*√(S/П)
Длина окружности (L) представляет собой число, которое получено в результате умножения числа Пи на диаметр данной окружности:
В конкретном случае:
L = 3,14*2 = 6,28 см.
Ответ: Длина окружности с диаметром 2 см составляет 6,28 см.
Известно, что длина окружности (L) рассчитывается путем умножения на два произведения числа Пи и длины ее радиуса (R). Формула выглядит так:
Из данной формулы можно выразить радиус
R = 12пи/2пи = 6 см
Радиус окружности, описанной около квадрата, равен 6 см.
Теперь можно вычислить сторону квадрата, вокруг которого описана данная окружность. Ее длина составляет R корней из 2:
а = 6 корней из 2.
Рассчитываем длину малого радиуса (r), который равен половине длины стороны квадрата:
r = а/2 = 6 корней из 2/2 = 3 корней из 2.
Длина окружности, вписанной в квадрат, рассчитывается по той же формуле:
L = 6 корней из 2 Пи.
Радиус окружности, равный 30 см, обозначается как R.
Площадь окружности можно найти, умножив число Пи на квадрат длины ее радиуса:
Подставим в формулу известные величины:
S = π*30² = 900π см. кв.
Длина окружности обозначается как С и рассчитывается путем умножения на 2 произведения числа Пи и ее радиуса:
Снова подставляем в формулу величины, которые известны:
C = 2π*30 = 60π см
Ответ: Площадь окружности равна 900π см², а ее длина составляет 60π см.
По условию задачи известно, что треугольник является правильным, что означает равенство всех его трех сторон. В данном случае его площадь может быть рассчитана по следующей формуле:
Зная площадь, мы получаем возможность вычислить длину стороны а. Она будет равна ± √48. Учитывая то, что сторона не может быть отрицательной величиной, можно говорить о том, что сторона а равна √48.
После того как длина стороны стала известна, можно приступить к вычислению площади описанной и вписанной окружности. Для этого не достает еще одного элемента – длины радиуса.
Радиус описанной окружности (R) равен длине стороны треугольника, разделенной на √3:
Радиус вписанной окружности (r) можно получить, разделив на 2 радиус описанной окружности:
Вычисленные длины радиусов вписанной и описанной окружностей позволяют определить ее длину ℓ, которая равна произведению числа Пи и радиуса окружности, умноженному на 2:
В нашем случае длина описанной окружности рассчитывается как:
Длина вписанной окружности будет составлять:
В условии задачи говорится о том, что радиус окружности R равен 12 см. Ее длина может быть вычислена посредством умножения на 2 произведения длины радиуса и числа Пи:
Известно, что число Пи – это константа, равная 3,14. Тогда длина окружности (С)высчитывается следующим образом:
Площадь окружности можно найти, умножив число Пи на длину ее радиуса, возведенную в квадратную степень:
S=πR²=3,14*12²=3,14*144=452,16 см кв.
По условию задачи длина окружности равна 20 Пи см. Зная формулу, по которой вычисляется длина окружности, можно записать следующее равенство:
Можно сократить Пи в обеих частях записанного равенства, в результате чего получится, что:
Теперь высчитаем, чему равна длина радиуса окружности:
Длина диаметра равна длине радиуса, умноженной на 2:
D = R*2 = 10*2 = 20 cм.
Полная градусная мера любой окружности равна 360 градусов. В случае, описанном в задании, градусная мера окружности составляет 120 градусов, что равно 1/3 части 360 градусов. Это позволяет сделать вывод о том, что длина окружности (L) может быть рассчитана следующим образом:
L = 6Пи * 3 = 18Пи
Формула, по которой вычисляется длина окружности, выглядит так:
Из данной формулы можно выразить радиус (R):
В заданном случае длина радиуса будет равна:
Обозначим прежнюю длину окружности как L, а новую – как L₁. Тогда можно записать следующее равенство:
Прежний радиус окружности примем за R, а новый ее радиус, который получится в результате увеличения длины, обозначим как R₁. Для того чтобы вычислить ее значение, следует сначала записать формулу, по которой вычисляется прежняя длина данной окружности:
Тогда формула для вычисления новой длины окружности будет иметь такой вид:
Отнимем от новой длины старую, и в итоге получим:
2πR₁ — 2πR = 9,42 см.
Перенесем 2Пи из левой части равенства в правую:
R₁ — R = 9,42 : 2π = 1,5 см.
Ответ: В результате увеличения длины окружности на 9,42 см ее радиус станет больше на 1,5 см.
Радиус окружности, которая вписана в правильный треугольник, обозначим r. Ее площадь (S) является произведением числа Пи и квадрата ее радиуса:
В случае треугольника, все стороны которого одинаковы, радиус вписанной в него окружности равен третьей части высоты, являющейся также и медианой.
Площадь правильного треугольника рассчитывается так:
Sтр = (1/2)*(2r/tg30)*3r = (1/2)*(2r√3)*3r = 3√3r².
Согласно условию задачи 3√3r² = πr² + 27√3 — 9π.
Перенесем πr² из левой части равенства в правую, изменив его знак на противоположный:
3√3r² — πr² = 27√3 — 9π
Вынесем в правой части равенства r² за скобки. То же самое сделаем с числом 9 в левой части равенства:
Сокращаем в обеих частях одинаковый множитель (3√3 — π) и получаем:
Таким образом, радиус окружности равен корню квадратному из 9:
Обозначим радиус второй окружности буквой х. В данном случае радиус первой окружности нужно обозначить как 5х. Известно, что разница между длинами диаметров двух окружностей равна 240 мм. На основании этого можно составить следующее равенство:
5х-х=240:2, что равно 4х=120
Теперь можно найти значение х:
Таким образом, радиус второй окружности равен 30 мм. Это позволяет вычислить радиус первой окружности, который в 5 раз больше радиуса второй из них:
Длина дуги обозначена как L. В качестве обозначения ее градусной меры используется α. Через R обозначена длина радиуса данной окружности. Формула расчета длины дуги выглядит так:
Это же равенство может быть переписано следующим образом:
Отсюда выведем радиус:
Длина окружности (L) равна произведению числа Пи и радиуса, которое умножено на 2:
Согласно заданию, длина дуги равна 3,14, что равно значению константы Пи.
Дуга способна поместиться в длине окружности 2 пи r/пи =2 r раз
Подставив в равенство значения, которые известны, мы получим:
Длина окружности будет равна:
Сократим 2Пи в каждой из частей равенства и получим, что:
Для решения поставленной задачи следует записать формулу расчета площади круга:
Эта величина указана в задании, и составляет 169Пи. Это значит, что:
Можно сократить одинаковый множитель Пи в обеих частях равенства:
Длина окружности обозначена С. Она считается по следующей формуле:
Длина радиуса уже известна, и ее можно подставить в формулу расчета длины окружности:
С = 2* π*13 = 26π см.
Известно, что площадь круга представляет собой величину, равную длине стороны этого квадрата, возведенной во вторую степень Sкв = а². Это значит, что в данном случае а² = 36 дм. Для того чтобы найти значение а, нужно извлечь квадратный корень из 36:
Длина диагонали (d) квадрата считается по приведенной ниже формуле:
Радиус (R)окружности, которая описана около квадрата, равен половине длины ее диагонали:
Площадь круга можно посчитать, умножив число Пи на квадрат его радиуса:
S = πR² = π · (3√2)² = 18π дм. кв.
Длина окружности рассчитывается посредством умножения на два числа Пи, после чего полученное число умножается на длину радиуса окружности:
C = 2πR = 2π · 3√2 = 6√2π дм.
Ниже записана формула, которая используется для того, чтобы рассчитать длину окружности:
где Пи – это константа, равная 3,14, а d – это диаметр окружности.
Отношение длины первой окружности к длине второй окружности равно отношению их диаметров:
В условии сказано, что длина первой окружности С = 3,5 дм. Таким образом:
C1 = 5/7 *C = 5/7 * 3,5 = 2,5 дм.
Для того чтобы узнать длину окружности (C), следует воспользоваться формулой, предназначенной для ее расчета. Она выглядит так:
Если подставить в эту формулу величины, которые даны по условию задачи, то получим:
Ответ: Длина окружности равна 88 см.
Длина окружности равна длине ее половины, умноженной на 2. Это значит, что в данном случае нужно умножить число 25,5, обозначающее половину длины окружности, на 2:
Для вычисления длины окружности необходимо число Пи умножить на два и умножить на длину его радиуса (2πR). Для данной задачи это будет выглядеть следующим образом:
Для того чтобы посчитать площадь круга, необходимо умножить число Пи на радиус, взятый в квадрат (S = πR²). По условию задачи площадь круга равна Пи м кв. Это значит, что:
Из данного равенства можно выразить R
Зная длину радиуса, можно переходить к вычислению длины окружности (С):
C = 2πR = 2π x 1 = 2π
Ответ: Длина окружности равна 2π.
С целью вычисления длины окружности (С) используется приведенная ниже формула:
Ее составляющими является постоянное число Пи и радиус окружности (R), длину которой необходимо вычислить.
Если длина диаметра окружности является известной величиной, то его нужно умножить на постоянное число Пи, равное 3,14, для того чтобы найти длину этой окружности. Формула выглядит так:
В условии говорится, что диаметр окружности равен 15 см:
С = 3,14 * 15 = 47,1 cм.
Ответ: Длина окружности равна 47,1 см.
Для расчета длины окружности (С) нужно знать длину ее радиуса (R) или диаметра (d). Тогда могут быть использованы следующие формулы:
C = 2πR или C = πd
По условию задания d = 10 см, а π = 22/7. Тогда длина окружности будет равна:
C = πd = (22/7) * 10 = 220/7 ≈ 31,4 см.
В случае, если длина диаметра (d) или длина радиуса (R) окружности известны, то эти величины можно использовать для нахождения длины окружности. При этом следует воспользоваться одной из формул:
Эти величины также помогут вычислить площадь круга. Формулы выглядят следующим образом:
Нужно записать формулу расчета длины окружности, для того чтобы понять, существует ли взаимосвязь между этой величиной и диаметром окружности:
Очевидно, что длина окружности является результатом умножения числа Пи на длину ее диаметра.
Если длина окружности известна, то ее можно использовать для определения диаметра (d). Это можно сделать следующим образом:
Длину окружности (С) можно рассчитать через диаметр (d), если воспользоваться нижеприведенной формулой:
Это формула демонстрирует, что длина окружности больше длины ее диаметра в π раз. Именно отношение длины окружности к величине ее диаметра и является числом π.
Число π представляет собой константу, которая получается в результате деления длины окружности (С) на ее диаметр (d). В виде формулы это выглядит так:
Располагая информацией о том, что площадь круга равна произведению числа Пи и квадрата ее радиуса (S=πr²), можно через нее выразить радиус:
Избавляемся от квадратной степени:
Следующим шагом в решении задачи станет вычисление длины окружности, которая находится путем умножения на 2 числа Пи и радиуса окружности:
С=2πr= C=2π√(185/π) = 2√(185π) см.
На последнем этапе находим 30%. Принимаем всю длину окружности за 100%:
Тогда х можно найти следующим образом:
х=(30*2√(185π))/100 = 0,6√(185π) см.
Существует две формулы, которые предназначены для расчета длины окружности (С). Они отличаются друг от друга тем, что элементом одной из них является радиус (r), а другой – диаметр (D):
Для того чтобы понять, во сколько раз длина окружности превышает длину ее диаметра, нужно произвести деление этих величин:
В результате получается число Пи, которое является постоянным и имеет значение примерно 3,14.
Формула расчета длины окружности (С) через диаметр (D) выглядит так:
Исходя из условий задания, это равенство может быть записано в следующем виде:
📹 Видео
Длина окружности. Практическая часть - решение задачи. 6 класс.Скачать
ГЕОМЕТРИЯ 9 класс: Длина окружности, площадь круга и площадь кругового сектораСкачать