1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;
2) система линейных неравенств, определяющих треугольник;
2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;
3) внутренние углы по теореме косинусов;
4) площадь треугольника;
5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;
10) параметры вписанной и описанной окружностей и их уравнения.
Внимание! Этот сервис не работает в браузере IE (Internet Explorer).
Запишите координаты вершин треугольника и нажмите кнопку.
A ( ; ), B ( ; ), C ( ; ) | Примечание: дробные числа записывайте Округлять до -го знака после запятой. Содержание Видео:Свойство биссектрисы треугольника с доказательствомСкачать Уравнение биссектрисы в треугольнике — формула, свойства и решение задачВидео:Уравнения стороны треугольника и медианыСкачать Прямая на плоскостиЗадачи по геометрии могут относиться к одному из двух принципиально отличающихся случаев. Это следующие:
Когда рассматривают треугольники и их элементы, то в ряде ситуаций речь идет именно о двумерном пространстве. В нем всякая прямая линия может быть выражена в виде нескольких математических форм или уравнений. Чаще всего используются следующие типы:
Видео:Вычисляем высоту через координаты вершин 1Скачать Делящая пополам угол линияКаждый школьник, который знаком с азами геометрии, знает, что прямая, делящая на две равные части произвольный угол, называется биссектрисой. Этот элемент присутствует для любой фигуры, которая в своем составе содержит какой-либо угол. Другое определение биссектрисы гласит, что она представляет собой геометрическое расположение точек, которые равноудалены от соответствующих сторон углового объекта. Например, если имеется угол dac, то любая из точек биссектрисы находится на одинаковом расстоянии как от отрезка da, так и от отрезка ac. Способы построенияВ классах общеобразовательных школ рассматривают два основных способа построения биссектрисы. Это следующие:
Имеется еще один метод, который позволяет просто начертить изучаемый линейный элемент. Для его использования нужна линейка со шкалой. С помощью нее следует от вершины угла отмерить два одинаковых отрезка любой длины. Затем соединить концы этих отрезкой, получится равнобедренный треугольник.
Основные свойстваЧтобы найти по координатам вершин длину биссектрисы треугольника, следует знать некоторые свойства этого геометрического объекта. Главным из них является существование двух линий, которые делят пополам исходный угол. Нужно понимать, что угол бывает не только внутренний, но и внешний. По сути, оба типа образуются при пересечении двух прямых. Нетрудно доказать, что биссектрисы каждого из них пересекаются всегда под углом 90 °. Еще одним важным свойством является тот факт, что пересекаются в одной точке биссектрисы треугольника. Она представляет собой центр вписанной в фигуру окружности. Чтобы это доказать, следует вспомнить, что каждая точка биссектрисы равноудалена от соответствующих сторон угла. Пусть имеется треугольник ABC. У него две биссектрисы пересекаются в точке O. Пусть это будут линии для углов A и B. Расстояние от O до AC должно быть равно таковому от O до AB. С другой стороны, расстояния от O до AB и до BC также одинаковые. Поэтому дистанции от O до BC и до AB также равны, а значит, точка O лежит на биссектрисе угла C и центром вписанной окружности является. В треугольнике рассматриваемый геометрический элемент используется часто для решения задач благодаря применению так называемой теоремы биссектрис. Чтобы ее сформулировать максимально простым языком, следует представить, что имеется треугольник произвольного типа ABC. В нем проведена биссектриса AD, где точка D лежит на прямой BC. Тогда справедливо следующее выражение: Это равенство не является очевидным, однако, оно было известно еще древнегреческим мыслителям. Эту теорему в несколько иной форме можно встретить в знаменитом труде по геометрии Евклида, который называется «Элементы». Доказательство равенства несложно провести с использованием небольших дополнительных построений и применением признаков подобия треугольников. Наконец, отрезок биссектрисы, который заключен между вершиной и противоположной стороной треугольника, имеет определенную длину. Вычислить ее можно с использованием следующего равенства: Это равенство прописано для угла A треугольника ABC, в котором противоположная A сторона имеет длину a. Стороны AB и AC имеют длины c и b, соответственно. Буквой p обозначен полупериметр фигуры.
Видео:№973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнениеСкачать Уравнение биссектрисы треугольникаКогда известно, как математически записывать выражения для прямых, и что такое биссектриса, и какими свойствами она обладает, можно переходить к непосредственному нахождению ее уравнения. В общем случае задача решается в результате применения следующей последовательности действий (существуют онлайн-ресурсы, позволяющие решить данную проблему):
Видео:Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACDСкачать Пример решения задачиПусть, треугольник задан координатами A (1, -1), B (0, -2), C (3,0). Следует уравнение биссектрисы найти для угла B и ее длину вычислить. Сначала нужно написать уравнения прямых для сторон AB и CB, получается:
Составить уравнения биссектрис можно так: | y — x + 2 |/(2)^0,5 = | 3*y — 2*x + 6 |/(13)^0,5. Решение этого уравнения приводит к следующим двум выражениям для взаимно перпендикулярных биссектрис:
Чтобы определить, какая из двух прямых является искомой для треугольника заданного, следует точку пересечения каждой из них со стороной AC найти. Уравнение для AC имеет вид: Подставляя его в каждое из выражений для биссектрис, можно получить две точки пересечения: При этом длина основания AC составляет 2,236 единицы через единичный вектор. Расстояние от точек D1 и D2 до A, C равно:
Видно, что точка пересечения второй прямой D2 лежит между A и C, поэтому соответствующее ей уравнение биссектрисы является ответом на задачу. Ее длину можно вычислить по формуле для модуля вектора BD2: BD2 = 2,014 единицы.
Видео:Формула для биссектрисы треугольникаСкачать Биссектриса треугольника онлайнС помощю этого онлайн калькулятора можно найти биссектрису треугольника. Для нахождения длины биссектрисы треугольника введите длины сторон треугольника, выберите сторону, к которой проведена биссектриса и нажмите на кнопку «Вычислить». Теоретическую часть смотрите ниже. Определение 1. Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны называется биссектрисой треугольника (Рис.1). Биссектриса треугольника также называют биссектрисей угла треугольника или биссектрисей внутреннего угла треугольника. Биссектриса внешнего угла треугольника − это биссектриса угла, которая является смежным с внутренним углом треугольника (Рис.2). Любой треугольник имеет три биссектрисы. Теорема 1. Биссектрисы треугольника пересекаются в одной точке. Доказательство. Проведем биссектрисы AA1, BB1 и обозначим через O точку их пересечения (Рис.3). Из точки O проведем перпендикуляры OK, OM и OL по сторонам треугольника ABC. По теореме 1 статьи Биссектриса угла. Свойства − OK=OL OK=OM. Следовательно OL=OM. Но последнее равенство означает, что точка O равноудалена от сторон AC и BC, т.е. находится на биссектрисе CC1 (Определение 2 статьи Биссектриса угла. Свойства). Точка пересечения биссектрис треугольника называется инцентром треугольника. Инцентр треугольника является центром вписанной в треугольник окружности (Рис.4). Доказательство следует из теоремы 1, поскольку точка O равноудалена от сторон треугольника ABC и, следовательно, является центром окружности равной OK=OL=OM. Видео:Вычисление медианы, высоты и угла по координатам вершинСкачать Длина биссектрисы треугольникаРассмотрим треугольник на Рис.5. Длина биссектрисы треугольника можно вычислить следующими формулами: где p − полупериметр треугольника ABC, ( small gamma -) угол между биссектрисой ( small l_c) и вершиной ( small h_c:)
Доказательство. 1) Из теоремы Стюарта следует:
А из теоремы о биссектрисе треугольника следует, что если lc является биссектрисей треугольника ABC (Рис.5), то имеет место следующее соотношение:
Поскольку то (2) можно переписать так:
Подставим (4) и (5) в (1):
Доказательство. 2) Подставим (4) и (5) в (6):
Доказательство. 3) Сделаем следующее обозначение:
Сделаем преобразования формулы (7), учитывая (9):
Доказательство. 4) Для доказательства четвертой формулы, снова обратимся к рисунке Рис.5. Запишем формулы площадей треугольников ABC, ADC и BDC:
Учитывая, что , получим:
Для ( small sin C ) применим формулу синуса двойного угла:
Подставляя (12) в (11) получим:
Доказательство. 5) Докажем пятую формулу. Из вершины C проведена вершина CH. Имеем прямоугольный треугольник CHD, для которого имеет место следующее равенство:
Остается показать, что . Поскольку биссектриса lc делит угол C пополам, то: 🔍 ВидеоНайдите биссектрису треугольникаСкачать найти уравнения биссектрис углов между прямымиСкачать Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать 7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать Математика без Ху!ни. Смешанное произведение векторовСкачать Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать Построение биссектрисы углаСкачать Уравнение биссектрисы углаСкачать Как найти длину биссектрисы, медианы и высоты? | Ботай со мной #031 | Борис ТрушинСкачать Метод координат. Как найти медиану треугольника, если известны координаты его вершин?Скачать Высота, биссектриса, медиана. 7 класс.Скачать Построение биссектрисы в треугольникеСкачать Определение натуральной величины треугольника АВС методом замены плоскостей проекцииСкачать |