Дана равнобедренная трапеция окружность построенная на боковой стороне

Дана равнобедренная трапеция окружность построенная на боковой стороне

Дана равнобедренная трапеция KLMN с основаниями KN и LM. Окружность с центром O, построенная на боковой стороне KL как на диаметре, касается боковой стороны MN и второй раз пересекает большее основание KN в точке H, точка Q — середина MN.

а) Докажите, что четырёхугольник NQOH — параллелограмм.

б) Найдите KN, если ∠LKN = 75° и LM = 2.

а) Треугольник KOH равнобедренный и трапеция KLMN равнобедренная, поэтому ∠KHO = ∠OKH = ∠MNK. Значит, прямые OH и MN параллельны, а так как OQ — средняя линия трапеции, то параллельны прямые OQ и KN. Противоположные стороны четырёхугольника NQOH попарно параллельны, следовательно, NQOH — параллелограмм.

б) Пусть окружность с центром в точке O радиуса R касается стороны MN в точке P. В прямоугольных треугольниках OPQ и KHL имеем

Дана равнобедренная трапеция окружность построенная на боковой стороне

Дана равнобедренная трапеция окружность построенная на боковой стороне

Пусть KH = x. Поскольку трапеция KLMN равнобедренная, KN = 2KH + LM; NH = KH + LM = x + 2.

Дана равнобедренная трапеция окружность построенная на боковой стороне

откуда x = 2. Значит, KN = 2x + 2 = 6.

Критерии оценивания выполнения заданияБаллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)3
Получен обоснованный ответ в пункте б)

имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки

2
Имеется верное доказательство утверждения пункта а)

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

Видео:Трапеция. Практическая часть - решение задачи. 8 класс.Скачать

Трапеция. Практическая часть - решение задачи. 8 класс.

Задача 16760 Дана равнобедренная трапеция KLMN с.

Условие

Дана равнобедренная трапеция окружность построенная на боковой стороне

Дана равнобедренная трапеция KLMN с основаниями KN и LM. Окружность с центром О, построенная на боковой стороне KL как на диаметре, касается боковой стороны MN и второй раз пересекает большее основание KN в точке Н, точка Q — середина MN.

а) Докажите, что четырёхугольник NQOH — параллелограмм.

б) Найдите KN, если угол LKN = 75° и LM = 4.

Решение

Дана равнобедренная трапеция окружность построенная на боковой стороне

OQ-средняя линия трапеции KLMN
OQ||LM
OQ||KN ⇒ OQ||HN
OK=OL=OH=OB=r
Δ KOH- равнобедренный (ОК=ОН=r)
∠ OKH=∠OHK=75 градусов;

∠OHK=∠QNK=75 градусов, это односторонние углы, значит
OH||QN
NQOH- параллелограмм, так как противоположные стороны попарно параллельны:
OQ||HN
и
OH||QN

б)
Дано:
∠ LKN=∠MNK=75 градусов;
LM=4

Пусть боковые стороны трапеции LK и MN пересекаются в точке А.
∠ АLМ=∠ LKN=75 градусов;
∠АML=∠MNK=75 градусов;
Значит, ∠ АLМ=∠АML=75 градусов;
Δ ALM — равнобедренный
∠ LAM=180 градусов — ∠ АLМ-∠АML=180 градусов -75 градусов-75 градусов=30 градусов;

ΔАОВ- прямоугольный (OB⊥MN) с острым углом ∠ LAM=30 градусов, катет против угла в 30 градусов равен половине гипотенузы
ОА=2*ОВ=2*r

Тогда AL=AO-LO=2r-r=r
AL=AM=r
LM- средняя линия треугольника AOQ
OQ=2LM=2*4=8

ΔАLM=ΔKOH
AL=AM=OK=OH=r
LM=KH=4

Видео:Геометрия Дана равнобедренная трапеция ABCD с основаниями AD и BC. Окружность с центром OСкачать

Геометрия Дана равнобедренная трапеция ABCD с основаниями AD и BC. Окружность с центром O

Дана равнобедренная трапеция окружность построенная на боковой стороне

Вопрос по геометрии:

Пожалуйста,решите,мне нужно с рисунком. ☺Дана равнобедренная трапеция ABCD с основаниями AD и BC. ОКРУЖНОСТЬ с центром O,построенная на боковой стороне AB как на диаметре,касается боковой стороны и второй раз пересекает большее основание AD в точке H,точка Q -середина CD.
1)Докажите,что четырехугольник DQOH-параллелограмм
2)НАЙДИТЕ AD,если угол Bad =60° и BC=2

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1

Введем дополнительные обозначения:
Пусть окружность касается стороны CD в точке К, ОЕ1 и ОЕ2 — высоты трапеции АОQD
a) по условию АВ-диаметр окружности, значит АО=ОВ=R
ABCD — равнобедренная трапеция, следовательно ∠ВАD=∠CDA и AB=CD=2R
Если Q — середина CD, то ОQ — средняя линия трапеции. Следовательно AO=OB=CQ=QD=R
Также АО=ОН=R, то есть ΔАОН-равнобедренный, значит
∠ВАD=∠OHA
При этом ∠ВАD=∠CDA, следовательно ∠OHA=∠CDA, значит эти углы соответственные при параллельных прямых ОН и DQ и секущей АD.
Итак, ОН=QD и ОН || QD, следовательно DQOH-параллелограмм.

б) ∠ВАD=∠OHA=60°
∠АОН=180°-(∠ВАD+∠OHA)=180°-(60°+60°)=60° — ΔАОН — равносторонний, следовательно АН=R
∠ABC=∠BCD=180°-60°=120°
Если окружность касается CD, то ∠OKC=90° и ОК=R
Сумма всех углов в четырехугольнике равна 360°
∠ВОК=360°-(∠ОВС+∠OKC+∠DCK)=360°-(120°+90°+120°)=30°
Если ОQ -средняя линия трапеции, то OQ || AD, следовательно
∠BAD=∠BOQ=60°
∠KOQ=∠BOQ-∠ВОК=60°-30°=30°
ΔOQK -прямоугольный с прямым углом OKQ

💡 Видео

СЕРЬЁЗНО готовимся к ОГЭ 2024! / Полный прогон задания 17 на ОГЭ по математикеСкачать

СЕРЬЁЗНО готовимся к ОГЭ 2024! / Полный прогон задания 17 на ОГЭ по математике

ЕГЭ, задача 16 (продолжение: "Планиметрия вокруг окружности")Скачать

ЕГЭ, задача 16 (продолжение: "Планиметрия вокруг окружности")

ЕГЭ Задание 16 Трапеция и две окружностиСкачать

ЕГЭ Задание 16 Трапеция и две окружности

8 класс, 6 урок, ТрапецияСкачать

8 класс, 6 урок, Трапеция

Задача 6 №27926 ЕГЭ по математике. Урок 141Скачать

Задача 6 №27926 ЕГЭ по математике. Урок 141

№1034. В равнобедренной трапеции меньшее основание равно боковой стороне, большее основаниеСкачать

№1034. В равнобедренной трапеции меньшее основание равно боковой стороне, большее основание

РАВНОБЕДРЕННАЯ ТРАПЕЦИЯ. Школьная задача! Вспомним детство!Скачать

РАВНОБЕДРЕННАЯ ТРАПЕЦИЯ. Школьная задача! Вспомним детство!

СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnlineСкачать

СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnline

Нафиг теорему синусов 3 задание проф. ЕГЭ по математике (часть II)Скачать

Нафиг теорему синусов 3 задание проф. ЕГЭ по математике (часть II)

Основания равнобедренной трапеции равны 72 и 30. Центр окружности, описанной около трапеции... (ЕГЭ)Скачать

Основания равнобедренной трапеции равны 72 и 30. Центр окружности, описанной около трапеции... (ЕГЭ)

ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 классСкачать

ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 класс

№799. Дана равнобедренная трапеция ABCD. Перпендикуляр, проведенный из вершины В к большему основаниСкачать

№799. Дана равнобедренная трапеция ABCD. Перпендикуляр, проведенный из вершины В к большему основани

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Задача 16 (планиметрия) ЕГЭ 2017 #1Скачать

Задача 16 (планиметрия) ЕГЭ 2017 #1

Задание второй части реального варианта ЕГЭ 2015 Планиметрия #3Скачать

Задание второй части реального варианта ЕГЭ 2015 Планиметрия #3

Трапеция. Задачи. Найти углы трапеции. Равнобедренной,прямоугольной,Скачать

Трапеция. Задачи. Найти углы трапеции. Равнобедренной,прямоугольной,

🔴 В прямоугольной трапеции основания ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРАСкачать

🔴 В прямоугольной трапеции основания  ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРА

Геометрия Задача № 26 Найти радиус вписанной в трапецию окружностиСкачать

Геометрия Задача № 26  Найти радиус вписанной в трапецию окружности
Поделиться или сохранить к себе: