Рис. 1. Прямоугольный треугольник
Прямоугольный треугольник — треугольник, у которого один из углов прямой ( ).
Для нахождения параметров прямоугольного треугольника можно пользоваться тем, что он остаётся треугольником. Т.е. все формульные зависимости, характеризующие произвольный треугольник, применимы и для прямоугольного, однако то, что наш объект именно прямоугольный треугольник, даёт несколько новых возможностей для расчёта (рис. 1).
У такого треугольника вводятся собственные обозначения: так стороны, содержащие (примыкающие) к прямому углу, называются катетами ( и ), а сторона, находящаяся против угла в , называется гипотенузой ( ). Наиболее часто используемым соотношением для прямоугольного треугольника является теорема Пифагора, связывающая катеты треугольника с гипотенузой.
Кроме того, в данном треугольнике можно по-другому найти высоты, биссектрисы и медианы.
- биссектриса через гипотенузу и один из углов
- биссектриса через катет и один из углов
- биссектриса через катет и гипотенузу
- медиана через катеты (следствие т. Пифагора)
- медиана через катет и один из углов
- высота через гипотенузу и углы
Рис. 2. Прямоугольный треугольник (тригонометрия)
Кроме того, на основании прямоугольного треугольника вводятся понятия ряда тригонометрических функций (рис. 2)
- Синусом угла альфа ( ) называется отношение противолежащего катета к гипотенузе:
- Косинусом угла альфа ( ) называется отношение прилежащего катета к гипотенузе:
- Тангенсом угла альфа ( ) называется отношение противолежащего катета к прилежащему:
- Котангенсом угла альфа ( ) называется отношение прилежащего катета к противолежащему:
Видео:Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать
Элементы треугольника. Высоты, медианы, биссектрисы
Высоты, медианы и биссектрисы треугольника постоянно встречаются нам в задачах по геометрии. Мы начнем с таблицы, в которой показано, что такое высоты, медианы и биссектрисы, и какими свойствами они обладают. Затем — подробные объяснения и решение задач.
Напомним, что высота треугольника — это перпендикуляр, опущенный из его вершины на противоположную сторону.
Три высоты треугольника всегда пересекаются в одной точке. Вот как это выглядит в случае остроугольного треугольника.
Попробуйте провести три высоты в тупоугольном треугольнике. Получилось? Да, редкий выпускник справляется с этим заданием. Действительно, мы не можем опустить перпендикуляр из точки на отрезок , зато можем опустить его на прямую — то есть на продолжение стороны .
В этом случае в одной точке пересекаются не сами высоты, а их продолжения.
А как выглядят три высоты в прямоугольном треугольнике? В какой точке они пересекаются?
Медиана треугольника — отрезок, соединяющий его вершину с серединой противоположной стороны.
Три медианы треугольника пересекаются в одной точке и делятся в ней в отношении , считая от вершины.
Биссектриса треугольника — отрезок, соединяющий вершину треугольника с точкой на противоположной стороне и делящий угол треугольника пополам.
У биссектрисы угла есть замечательное свойство — точки, принадлежащие ей, равноудалены от сторон угла. Поэтому три биссектрисы треугольника пересекаются в одной точке, равноудаленной от всех сторон треугольника. Эта точка является центром окружности, вписанной в треугольник.
Еще одно свойство биссектрисы пригодится тем, кто собирается решать задачу . Биссектриса треугольника делит противоположную сторону в отношении длин прилежащих сторон.
Ты нашел то, что искал? Поделись с друзьями!
Разберем несколько задач, в которых речь идет о высотах, медианах и биссектрисах треугольника. Все задачи взяты из Банка заданий ФИПИ.
1. Найдите острый угол между биссектрисами острых углов прямоугольного треугольника. Ответ дайте в градусах.
Пусть биссектрисы треугольника (в котором угол равен ) пересекаются в точке .
Острый угол между биссектрисами на рисунке обозначен .
Угол смежный с углом , следовательно, .
Поскольку треугольник — прямоугольный, то .
2. Острые углы прямоугольного треугольника равны и . Найдите угол между высотой и биссектрисой, проведенными из вершины прямого угла. Ответ дайте в градусах.
Пусть — высота, проведенная из вершины прямого угла , — биссектриса угла .
Угол между высотой и биссектрисой — это угол .
3. Два угла треугольника равны и . Найдите тупой угол, который образуют высоты треугольника, выходящие из вершин этих углов. Ответ дайте в градусах.
Из треугольника (угол — прямой) найдем угол . Он равен .
Из треугольника ( — прямой) найдем угол . Он равен .
В треугольнике известны два угла. Найдем третий, то есть угол , который и является тупым углом между высотами треугольника :
4. В треугольнике угол равен , и — биссектрисы, пересекающиеся в точке . Найдите угол . Ответ дайте в градусах.
Пусть в треугольнике угол равен , угол равен .
Из треугольника получим, что .
5. В треугольнике угол равен , угол равен . , и — биссектрисы, пересекающиеся в точке . Найдите угол . Ответ дайте в градусах.
Найдем угол . Он равен .
Из треугольника найдем угол . Он равен .
6. В треугольнике , — медиана, угол равен , угол равен . Найдите угол . Ответ дайте в градусах.
Как решать эту задачу? У медианы прямоугольного треугольника, проведенной из вершины прямого угла, есть особое свойство. Мы докажем его в теме «Прямоугольник и его свойства».
Подсказка: Сделайте чертеж, найдите на нем равнобедренные треугольники и докажите, что они равнобедренные.
Видео:Высота, биссектриса, медиана. 7 класс.Скачать
Треугольник. Важные факты о высоте, биссектрисе и медиане
Определения
Медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
Биссектриса треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны.
Высота треугольника – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.
Теорема
В любом треугольнике высоты (или их продолжения) пересекаются в одной точке (рис. 1 и 2), биссектрисы пересекаются в одной точке (рис. 3), медианы пересекаются в одной точке (рис. 4).
Теорема
В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой.
Верны и другие утверждения:
В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
Теорема
В любом треугольнике медианы точкой пересечения делятся в отношении (2:1) , считая от вершины.
Доказательство
Пусть (AD) и (BE) – медианы в треугольнике (ABC) , (O) – точка пересечения (AD) и (BE) .
(DE) – средняя линия в треугольнике (ABC) , тогда (DEparallel AB) , значит (angle ADE = angle BAD) , (angle BED = angle ABE) , следовательно, треугольники (ABO) и (DOE) подобны (по двум углам).
Из подобия треугольников (ABO) и (DOE) : (dfrac = dfrac = dfrac) .
Для других медиан треугольника (ABC) требуемое свойство доказывается аналогично.
Теорема
Медиана треугольника делит его на два равновеликих треугольника (равновеликие треугольники – это треугольники, у которых площади равны).
Доказательство
Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию: (S_ = 0,5cdot ACcdot h) .
Пусть (BD) – медиана в треугольнике (ABC) , тогда (AD = DC) .
(S_ = 0,5cdot ADcdot h) ,
(S_ = 0,5cdot DCcdot h) .
Так как (AD = DC) , то (S_ = S_) , что и требовалось доказать.
Теорема
В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.
Верно и обратное: если медиана равна половине стороны, к которой она проведена, то она проведена из вершины прямого угла.
Доказательство
1) Докажем, что если (triangle ABC) – прямоугольный, то (BM=frac12AC) , где (M) – середина гипотенузы (AC) .
Достроим треугольник (ABC) до прямоугольника (ABCD) и проведем диагональ (BD) . Т.к. в прямоугольнике диагонали делятся точкой пересечения пополам и равны, то (ACcap BD=M) , причем (AM=MC=BM=MD) , чтд.
2) Докажем, что если в треугольнике (ABC) медиана (BM=AM=MC) , то (angle B=90^circ) .
Треугольники (AMB) и (CMB) – равнобедренные, следовательно, (angle BAM=angle ABM=alpha, quad angle MBC=angle MCB=beta) .
Т.к. сумма углов в треугольнике равна (180^circ) , то для (triangle ABC) :
(alpha+(alpha+beta)+beta=180^circ Rightarrow alpha+beta=90^circ Rightarrow angle B=90^circ) , чтд.
Теорема
Биссектриса треугольника делит его сторону на части, пропорциональные прилежащим сторонам:
Верно и обратное: если отрезок, проведенный из вершины треугольника к стороне, делит эту сторону на отрезки, пропорциональные прилежащим сторонам, то это биссектриса.
Доказательство
Площади треугольников, у которых есть равные углы, относятся как произведения сторон, образующих эти углы, то есть [dfrac<S_><S_> = dfrac = dfrac]
В итоге (dfrac = dfrac<S_><S_> = dfrac) , откуда (dfrac = dfrac) , что и требовалось доказать.
Теорема
Если точка равноудалена от сторон угла, то она лежит на его биссектрисе.
Верно и обратное: если точка лежит на биссектрисе угла, то она равноудалена от его сторон.
Доказательство
1) Докажем, что если (KA=KB) , то (OK) – биссектриса.
Рассмотрим треугольники (AOK) и (BOK) : они равны по катету и гипотенузе, следовательно, (angle AOK=angle BOK) , чтд.
2) Докажем, что если (OK) – биссектриса, то (KA=KB) .
Аналогично треугольники (AOK) и (BOK) равны по гипотенузе и острому углу, следовательно, (KA=KB) , чтд.
🎦 Видео
7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Свойства прямоугольного треугольника. 7 класс.Скачать
Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать
ГЕОМЕТРИЯ 7 класс. Медиана прямоугольного треугольника. Свойство. Доказательство для 7 класса.Скачать
Острые углы прямоугольного треугольника равны 63 и 27. Найдите угол между биссектрисой и медианой...Скачать
Свойство биссектрисы треугольника с доказательствомСкачать
БИССЕКТРИСЫ, МЕДИАНЫ И ВЫСОТЫ В ПРЯМОУГОЛЬНЫХ ТРЕУГОЛЬНИКАХСкачать
Построение медианы в треугольникеСкачать
КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольникСкачать
ЕГЭ Математика. Угол между медианой и биссектрисой в прямоугольном треугольникеСкачать
биссектриса прямоугольного треугольника #SHORTSСкачать
ЕГЭ 2024 по математике. №1,17 Медиана, биссектриса, высота, серединный перпендикулярСкачать
Медиана, биссектриса и высота. Прямоугольный треугольник.Скачать
Свойство медианы в прямоугольном треугольнике. 8 класс.Скачать
Высота, медиана, биссектриса треугольника. Как построить в треугольнике. Геометрия 7 классСкачать
ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК: высота, медиана, биссектрисаСкачать
Построение биссектрисы в треугольникеСкачать
Построение высоты в треугольникеСкачать