Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Определение
Прямоугольный треугольник — это треугольник, в котором один из углов прямой.
Гипотенуза в прямоугольном треугольнике — это сторона напротив прямого угла.
 
Катет в прямоугольном треугольнике — это две стороны прилежащие к прямому углу.
 
Видео:7 класс, 27 урок, Об аксиомах геометрииСкачать

Свойства прямоугольного треугольника
В прямоугольном треугольнике:
- Сумма острых углов 90˚.
- Катет, противолежащий углу в 30˚, равен половине гипотенузы.
- Медиана, проведенная к гипотенузе, равна ее половине.
- Центр описанной окружности — середина гипотенузы. 
Формулы:
- Площадь прямоугольного треугольника равна 
 половине произведения катетов:
- Радиус описанной окружности около прямоугольного 
 треугольника равен половине гипотенузы:
- Радиус вписанной окружности в прямоугольный треугольник 
 выражается следующим образом:
- Квадрат гипотенузы равен сумме квадратов катетов:
 
Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

Признаки равенства прямоугольных треугольников
С помощью признаков равенства прямоугольных треугольников
можно доказать что прямоугольные треугольники равны.
- По двум катетам: 
 Если два катета одного прямоугольного треугольника соответственно
 равны двум катетам другого прямоугольного треугольника,
 то такие треугольники равны.
- По катету и гипотенузе: 
 Если катет и гипотенуза одного прямоугольного треугольника соответственно
 равны катету и гипотенузе другого прямоугольного треугольника,
 то такие треугольники равны.
- По гипотенузе и острому углу: 
 Если гипотенуза и острый угол одного прямоугольного треугольника соответственно
 равны гипотенузе и острому углу другого прямоугольного треугольника,
 то такие треугольникиравны.
- По катету и острому углу: 
 Если катет и острый угол одного прямоугольного треугольника соответственно
 равны катету и острому углу другого прямоугольного треугольника,
 то такие треугольники равны.
 
Видео:Высота прямоугольного треугольникаСкачать

Признаки прямоугольного треугольника
С помощью признаков прямоугольного треугольника можно
доказать, что треугольник прямоугольный.
- По теореме Пифагора:
 Если квадрат стороны равен сумме квадратов двух других сторон,
 то треугольник прямоугольный.
- По центру описанной окружности: 
 Если центр описанной окружности лежит на стороне треугольника,
 то треугольник прямоугольный.
- По медиане: 
 Если медиана треугольника равна половине стороны, к которой она проведена,
 то треугольник прямоугольный.
- По площади:
 Если площадь треугольника равна половине произведения двух его сторон,
 то треугольник прямоугольный.
- По радиусу описанной окружности: 
 Если радиус описанной окружности равен половине,
 то треугольник прямоугольный.
Видео:Свойства прямоугольного треугольника. 7 класс.Скачать

Признаки подобия прямоугольных треугольников
С помощью признаков подобия прямоугольных треугольников можно
доказать, что прямоугольные треугольники подобны.
Видео:прямоугольный треугольник для ЕГЭ #егэ2023 #математика #математикаегэ #школа #fyp #егэСкачать

Прямоугольный треугольник
Прямоугольный треугольник – треугольник, в котором один угол прямой (то есть равен 90˚).
Сторона, противоположная прямому углу, называется гипотенузой прямоугольного треугольника. 
Стороны, прилежащие к прямому углу, называются катетами .
 
Признаки равенства прямоугольных треугольников
Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны ( по двум катетам ).
Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны ( по катету и острому углу ).
 
Если гипотенуза и катет одного прямоугольного треугольника равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и катету ).
Свойства прямоугольного треугольника
1. Сумма острых углов прямоугольного треугольника равна 90˚.
2. Катет, противолежащий углу в 30˚, равен половине гипотенузы.
И обратно, если в треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚.
3. Теорема Пифагора:
, где 
– катеты, 
– гипотенуза. Видеодоказательство
 4. Площадь прямоугольного треугольника с катетами 
:
 5. Высота прямоугольного треугольника, проведенная к гипотенузе выражается через катеты 
и гипотенузу 
следующим образом:
6. Центр описанной окружности – есть середина гипотенузы.
 7. Радиус описанной окружности есть половина гипотенузы 
:
8. Медиана, проведенная к гипотенузе, равна ее половине
 9. Радиус вписанной окружности выражается через катеты 
и гипотенузу 
следующим образом:
Тригонометрические соотношения в прямоугольном треугольнике смотрите здесь.
Видео:Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать

Аксиомы по прямоугольным треугольникам
Прямоугольный треугольник — треугольник, имеющий прямой угол. Стороны, образующие прямой угол, называют катетами, а сторону, противолежащую к прямому углу, называют гипотенузой.
Свойства прямоугольного треугольника: 
1. Катет меньше гипотенузы. 
2. Квадрат гипотенузы равен сумме квадратов катетов (теорема Пифагора): с 2 = а 2 + b 2 . 
3. Сумма острых углов прямоугольного треугольника равна 90°. 
4. Медиана,проведенная к гипотенузе,равна половине гипотенузы (радиусу окружности, описанной около треугольника). 
5. Радиус окружности, вписанной в прямоугольный треугольник ,можно вычислить по формуле: r = (a + b — c)/2. 
6. Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы. 
7. Если катет прямоугольного треугольника равен 1/2 гипотенузы, то угол, лежащий против этого катета, равен 30°.
Признаки равенства прямоугольных треугольников
Два прямоугольных треугольника равны если: 
• два катета одного треугольника равны двум катетам другого; 
• катет и острый угол одного треугольника равны катету и острому углу другого треугольника; 
• гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого треугольника; 
• гипотенуза и катет одного треугольника равны гипотенузе и катету другого треугольника.
Это конспект по теме «Прямоугольные треугольники». Выберите дальнейшие действия:
🎥 Видео
Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 классСкачать

Основные теоремы и аксиомы геометрии.Скачать

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Свойства прямоугольного треугольника. Практическая часть. 7 класс.Скачать

ПРОДОЛЖАЕМ РАЗБИРАТЬСЯ С ПРЯМОУГОЛЬНЫМ ТРЕУГОЛЬНИКОМ ЧАСТЬ II #Shorts #математика #егэ #огэСкачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

7 класс, 32 урок, Остроугольный, прямоугольный и тупоугольный треугольникиСкачать

Решение прямоугольных треугольников. Практическая часть. 8 класс.Скачать

Что с углами. Прямоугольный треугольник #shortsСкачать

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

Высота в прямоугольном треугольникеСкачать

Медиана в прямоугольном треугольникеСкачать























