10 аксиом геометрии треугольник

Содержание
  1. 10 аксиом геометрии треугольник
  2. Аксиомы геометрии и следствия из них
  3. При этом прямую a называют границей каждой из указанных полуплоскостей, и ее точки не принадлежат ни одной из этих полуплоскостей
  4. Основные аксиомы планиметрии. Виды углов
  5. 1. Основные понятия планиметрии
  6. 2. Два основных факта об углах
  7. 3. Прямой угол
  8. 4. Острый и тупой угол
  9. Средний уровень
  10. Основные объекты и аксиомы планиметрии
  11. Точка и прямая
  12. I. Аксиомы принадлежности
  13. Луч, отрезок, угол
  14. 1) ЛУЧ
  15. 2) ОТРЕЗОК
  16. 3) УГОЛ
  17. Некоторые следствия из аксиом стереометрии
  18. Что такое аксиома и теорема
  19. Что такое аксиома
  20. Что такое лемма
  21. Что такое следствие в геометрии
  22. Аксиомы геометрии
  23. К аксиомам относятся следующие утверждения:
  24. Советуем посмотреть:
  25. Правило встречается в следующих упражнениях:
  26. презентация к уроку «Аксиомы стереометрии. Следствия из аксиом» презентация к уроку по геометрии (10 класс) по теме
  27. Основные понятия и аксиомы стереометрии
  28. Аксиомы элементарной геометрии
  29. Что такое аксиома, теорема и доказательство теоремы
  30. Понятие аксиомы
  31. Понятие теоремы
  32. Теоремы без доказательств
  33. Понятия свойств и признаков
  34. 📹 Видео

Видео:Геометрия 7 класс (Урок№9 - Треугольник.)Скачать

Геометрия 7 класс (Урок№9 - Треугольник.)

10 аксиом геометрии треугольник

В книге А.В.Погорелова [3] геометрия основана на следующих аксиомах.
1. Аксиомы принадлежности.
1.1 Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей.
1.2. Через любые две точки можно провести прямую, и только одну.
2. Аксиомы порядка.
2.1. Из трех точек на прямой одна и только одна лежит между двумя другими.
2.2. Прямая, лежащая в плоскости, разбивает эту плоскость на две полуплоскости. Если концы какого-нибудь отрезка принадлежат одной полуплоскости, то отрезок не пересекает прямую. Если концы отрезка принадлежат разным полуплоскостям, то отрезок пересекает прямую.
3. Аксиомы меры для отрезков и углов.
3.1. Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.
3.2. Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180 0 . Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.
3.3. Каково бы ни было вещественное число d > 0, существует отрезок длины d .
4. Аксиома существования треугольника, равного данному.
4.1. Каков бы ни был треугольник, существует равный ему треугольник в данной плоскости в заданном расположении относительно данной полупрямой в этой плоскости.
5. Аксиома параллельных
5.1. На плоскости через точку, не лежащую на данной прямой, можно провести не более одной прямой, параллельной данной.
6. Аксиомы стереометрии
6.1. Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей.
6.2. Если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.
6.3. Если две различные прямые имеют общую точку, то через них можно провести плоскость, и притом только одну.

В курсе элементарной геометрии Д.И.Перепелкина [4] рассматриваются следующие аксиомы геометрии.
1. Аксиомы соединения.
1.1. Через любые две данные точки проходит одна и только одна прямая.
1.2. На каждой прямой имеется бесчисленное множество точек.
1.3. Существуют точки, не лежащие на одной прямой.
1.4. Через любые три данные точки, не лежащие на одной прямой, проходит одна и только одна плоскость.
1.5. На каждой плоскости имеется бесчисленное множество точек.
1.6. Если две точки данной прямой лежат на некоторой плоскости, то и все точки этой прямой лежат на той же плоскости.
1.7. Если две плоскости имеют общую точку, то они имеют и вторую общую точку.
1.8. Существуют точки, не лежащие на одной плоскости.
2. Аксиомы порядка.
2.1. Из трех точек одной прямой всегда одна и только одна лежит между двумя другими.
2.2. Если A и B – две данные точки, то на прямой AB существует как бесчисленное множество точек, лежащих между A и B , так и бесчисленное множество точек, для которых точка B лежит между точкой A и каждой из этих точек.
2.3. Всякая точка O , лежащая на прямой, разделяет остальные точки этой прямой на два класса так, что точка O лежит между любыми двумя точками различных классов, но не лежит между двумя точками одного класса.
2.4. Всякая прямая, лежащая в некоторой плоскости, делит эту плоскость на две выпуклые области.
3 . Аксиомы конгруэнтности.
3.1. Равенство отрезков и углов обладает свойствами рефлексивности, симметричности и транзитивности.
3.2. Пусть точка C лежит на прямой AB между точками A и B, а точка C’ на прямой A’B’ между точками A’ и B’. Если при этом AC=A’C’, BC=B’C’ , то AB=A’B’. Если при этом же условии AB=A’B’, AC=A’C’, то BC=B’C’.
3.3. Пусть луч l лежит между сторонами h, k угла hk , а луч l’ – между сторонами h’, k’ угла h’k’ . Если при этом 10 аксиом геометрии треугольникhl =10 аксиом геометрии треугольник h’l’ и 10 аксиом геометрии треугольникlk = 10 аксиом геометрии треугольникl’k’, то и 10 аксиом геометрии треугольникhk = 10 аксиом геометрии треугольникh’k’. Если при этом же условии 10 аксиом геометрии треугольникhk = 10 аксиом геометрии треугольник h’k’ и 10 аксиом геометрии треугольникhl = 10 аксиом геометрии треугольникh’l’, то и 10 аксиом геометрии треугольникkl = 10 аксиом геометрии треугольникk’l’.
3.4. Пусть AB – некоторый отрезок и h’ – луч, выходящий из точки A’ ; на луче h’ существует одна и только одна такая точка B’ , что отрезок AB конгруэнтен отрезку A’B’.
3.5. Пусть hk – некоторый угол, h’ – луч, выходящий из точки O’ и a полуплоскость, выходящая из луча h’ ; в полуплоскости a существует один и только один такой луч k’ , выходящий из точки O’ , что 10 аксиом геометрии треугольникhk = 10 аксиом геометрии треугольникh’k’.
3 .6. Если две стороны одного треугольника соответственно равны двум сторонам другого и углы обоих треугольников, заключенные между этими сторонами, равны, то и остальные углы этих треугольников равны.
4. Аксиомы окружности.
4.1. Если один конец отрезка лежит внутри окружности, а другой – вне окружности, то отрезок имеет с окружностью общую точку.
4.2. Если один конец некоторой дуги окружности лежит внутри другой окружности, а другой конец – вне окружности, то дуга окружности и вторая окружность имеют общую точку.
5. Аксиома параллельности.
5.1. Через точку, не лежащую на данной прямой, проходит не более одной прямой, параллельной данной.
6. Аксиома Архимеда.
6.1. Каковы бы ни были два данных отрезка, всегда найдется такое кратное меньшего отрезка, которое превосходит больший.
7. Аксиома Кантора.
7.1. Если дана безгранично убывающая последовательность вложенных отрезков, то существует такая точка, которая будет внутренней или конечной точкой каждого из этих отрезков.

В школьном учебнике геометрии Л.С.Атанасяна и др. используется следующая система аксиом геометрии.
1. Аксиомы взаимного расположения точек, прямых и плоскостей.
1.1. На каждой прямой и в каждой плоскости имеются точки.
1.2. Имеются по крайней мере три точки, не лежащие на одной прямой, и по крайней мере четыре точки, не лежащие в одной плоскости.
1.3. Через любые две точки проходит прямая, и притом только одна.
1.4. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
1.5. Если две точки прямой принадлежат плоскости, то и все точки прямой лежат в этой плоскости.
1.6. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.
1.7. Из трех точек прямой одна и только одна лежит между двумя другими.
1.8. Каждая точка прямой разделяет ее на две части (два луча) так, что любые две точки одного и того же луча лежат по одну сторону от данной точки, а любые две точки разных лучей лежат по разные стороны от данной точки.
1.9. Каждая прямая, лежащая в плоскости, разделяет эту плоскость на две части (две полуплоскости) так, что любые две точки одной и той же полуплоскости лежат по одну сторону от данной прямой, а любые две точки разных полуплоскостей лежат по разные стороны от данной прямой.
1.10. Каждая плоскость разделяет пространство на две части (два полупространства) так, что две точки одного и того же полупространства лежат по одну сторону от данной плоскости, а любые две точки разных полупространств лежат по разные стороны от данной плоскости.
2. Аксиомы наложения и равенства.
Наложением называется отображение пространства на себя. Две фигуры называются равными если одна из них переходит в другую с помощью некоторого наложения.
2.1. Если при наложении совмещаются концы двух отрезков, то совмещаются и сами отрезки.
2.2. На любом луче от его начала можно отложить отрезок, равный данному, и притом только один.
2.3. От любого луча в данную полуплоскость можно отложить угол, равный данному неразвернутому углу, и притом только один.
2.4. Два равных угла hk и h 1 k 1 , лежащие в плоскостях, являющихся границами полупространств P и P 1 можно совместить наложением так, что при этом совместятся полупространства P и P 1 , причем это можно сделать двумя способами: 1) так, что луч h совместится с лучом h 1 , а луч k – с лучом k 1 ; 2) так, что луч h совместится с лучом k 1 , а луч k – с лучом h 1.
2.5. Любая фигура равна самой себе.
2.6. Если фигура Ф равна фигуре Ф 1 , то фигура Ф 1 равна фигуре Ф .
2.7. Если фигура Ф 1 равна фигуре Ф 2 , а фигура Ф 2 равна фигуре Ф 3 , то фигура Ф 1 равна фигуре Ф 3.
3. Аксиомы измерения отрезков.
3. 1. При выбранной единице измерения отрезков длина каждого отрезка выражается положительным числом.
3.2. При выбранной единице измерения отрезков для любого положительного числа существует отрезок, длина которого выражается этим числом.
4. Аксиома параллельных.
4.1. В любой плоскости через точку, не лежащую на данной прямой этой плоскости, проходит только одна прямая, параллельная данной.

В школьном учебнике геометрии И.М.Смирновой, В.А.Смирнова [6] основными геометрическими фигурами считаются точки , прямыеи плоскости . Первые аксиомы относятся к понятию принадлежности.
1. Через любые две точки проходит единственная прямая.
2. Для любой прямой существуют точки, принадлежащие этой прямой и точки, ей не принадлежащие.
Одним из основных отношений взаимного расположения точек на прямой является отношение лежать между. Точки на прямой могут лежать между двумя данными точками на этой прямой или не лежать между ними. Если точка О лежит между точками А и В, то в этом случае говорят также, что точки А и В лежат на прямой по разные стороны от точки О. В противном случае говорят, что точки А и В лежат на прямой по одну сторону от точки О .
В качестве аксиом взаимного расположения точек на прямой принимаются следующие свойства.
3. Из трех точек на прямой только одна лежит между двумя другими.
4. Каждая точка на прямой разбивает эту прямую на две части так, что точки из разных частей лежат по разные стороны от данной точки, а точки из одной части лежат по одну сторону от данной точки .
Часть прямой, состоящая из двух данных точек и всех точек, лежащих между ними, называется отрезком. При этом сами данные точки называются концами отрезка.
Часть прямой, состоящая из данной точки и всех точек, лежащих от нее по одну сторону, называется полупрямой или лучом. При этом сама данная точка называется началом или вершинойлуча.
Одной из основных операций, которую можно производить с отрезками, является операция откладывания данного отрезка на данном луче от его вершины. Получающийся при этом отрезок называется равным исходному отрезку. Равенство отрезков АВ и А 1 В 1 записывается в виде АВ=А 1 В 1 . Оно означает, что если один из этих отрезков, например АВ, отложить на луче А 1 В 1 от точки А 1 , то отрезок АВ при этом совместится с отрезком А 1 В 1.
Если при откладывании отрезка АВ на луче А 1 В 1 от точки А 1 точка В переходит в точку, лежащую между точками А 1, В 1 , то говорят, что отрезок АВ меньше отрезка А 1 В 1 и обозначают АВ 1 В 1 . Говорят также, что отрезок А 1 В 1 больше отрезка АВ и обозначают А 1 В 1 >AB
Если на отрезке АВ между точками А и В взять какую-либо точку С, то образуется два новых отрезка АС и СВ. Отрезок АВ называется суммой отрезков АС и СВ и обозначается АВ = АС + СВ. Каждый из отрезков АС и СВ называется разностью отрезка АВ и другого отрезка, обозначается АС = АВ — СВ , СВ = АВ — АС . Чтобы сложить два произвольных отрезка АВ и CD , продолжим отрезок АВ за точку В и на этом продолжении отложим отрезок ВЕ, равный CD . Отрезок АЕ даст сумму отрезков АВ и CD , АЕ = АВ + CD . Аналогичным образом поступают для вычитания из большего отрезка меньшего.
Следующие свойства, относящиеся к понятию равенства отрезков, принимаются за аксиомы.
5. Каждый отрезок равен самому себе.
6. Если два отрезка равны третьему, то они равны между собой.
7. На любом луче от его начала можно отложить только один отрезок, равный данному.
8. Отрезки, полученные сложением или вычитанием соответственно равных отрезков, равны .
Используя операцию сложения отрезка с самим собой можно определить операцию умножения отрезка на натуральное число. А именно, положим для отрезка АВ 2 АВ = АВ + АВ ,3 АВ = 2АВ + АВ , . , nАВ = (n- 1 )АВ + АВ , . . Определим также операцию деления отрезка на натуральное число, или, что то же самое, операцию деления отрезка на n равных частей, считая AB : n отрезком, при умножении которого на n получается исходный отрезок АВ, т.е. n(AB : n ) = AB .
В качестве аксиомы принимается следующее свойство.
9. Любой отрезок можно разделить на n равных частей, n = 2,3, . .
Следующее свойство принимается в качестве аксиомы взаимного расположения точек на плоскости относительно данной прямой.
10. Каждая прямая на плоскостиразбивает эту плоскость на две части, для точек которых говорят, что они лежат по разные стороны от данной прямой. При этом, если две точки, принадлежат разным частям плоскости относительно данной прямой, то отрезок, соединяющий эти точки, пересекается с прямой. Если две точки принадлежат одной части, то отрезок, соединяющий эти точки, не пересекается с прямой .
Часть плоскости, состоящую из точек данной прямой и точек, лежащих по одну сторону от этой прямой, называется полуплоскостью .
Два луча с общей вершиной так же разбивают плоскость на две части. Если лучи не лежат на одной прямой, то меньшая из этих частей является общей частью двух полуплоскостей, определяемых данными лучами.
Фигура, образованная двумя лучами с общей вершиной и одной из частей плоскости, ограниченной этими лучами, называется углом. Общая вершина называется вершиной угла, а сами лучи — сторонами угла. Точки угла, не лежащие на его сторонах, называются внутренними. Лучи, исходящие из вешины данного угла и проходящие через внутренние точки угла, называются внутренними.
Одной из основных операций, которую можно производить с углами, является операция откладывания данного угла в ту или другую сторону от данного луча. Получающийся при этом угол называется равным исходному углу . Равенство углов АОВ и А 1 О 1 В 1 записывается в виде 10 аксиом геометрии треугольникАОВ = 10 аксиом геометрии треугольник А 1 О 1 В 1 . Оно означает, что если один из этих углов, например АОВ, отложить от луча О 1 А 1 в сторону, определяемую лучом О 1 В 1 , то угол АОВ при этом совместится с углом А 1 О 1 В 1.
Если при откладывании угла АОВ на луче А 1 О 1 В 1 от луча О 1 А 1 луч ОВ переходит в луч, лежащий внутри угла А 1 О 1 В 1 , то говорят, что угол АОВ меньше угла А 1 О 1 В 1 и обозначают 10 аксиом геометрии треугольникАOВ А
1 O 1 В 1 . Говорят также, что угол А 1 О 1 В 1 больше угла АОВ и обозначают 10 аксиом геометрии треугольникА 1 O 1 В 1 >10 аксиом геометрии треугольникAOB.
Если внутри угла АОВ провести луч ОС, то образуется два новых угла АОС и СОВ. Угол АОВ называется суммой углов АОС и СОВ и обозначается 10 аксиом геометрии треугольник АОВ = 10 аксиом геометрии треугольникАOС + 10 аксиом геометрии треугольникСOВ . Каждый из углов АОС и СОВ называется разностью угла АОВ и другого угла, обозначается 10 аксиом геометрии треугольник АOС = 10 аксиом геометрии треугольникАOВ — 10 аксиом геометрии треугольникСOВ ,10 аксиом геометрии треугольник СOВ = 10 аксиом геометрии треугольникАOВ — 10 аксиом геометрии треугольникАOС . Чтобы сложить два угла, например АОВ и 1 D , отложим угол CO 1D от луча ОВ так, чтобы точки В и D находились по разные стороны от прямой ОВ. Обозначим ОЕ луч, в который перейдет луч О 1 D. Тогда угол АОЕ даст сумму углов АОВ и 1 D, 10 аксиом геометрии треугольник АOЕ = 10 аксиом геометрии треугольникАOВ + 10 аксиом геометрии треугольникCO 1 D. Аналогичным образом поступают для вычитания из большего угла меньшего.
Аксиомами, относящимися к понятию равенства углов являются следующие:
11. Каждый угол равен самому себе.
12. Если два угла равны третьему, то они равны между собой.
13. От любого луча на плоскостив заданную сторону можно отложить только один угол равный данному.
14. Углы, полученные сложением или вычитанием соответственно равных углов, равны.
15. Все развернутые углы равны .
Используя операцию сложения угла с самим собой можно определить операцию умножения угла на натуральное число и деления угла на n равных частей. Для угла АОВ углом АОВ :n считается такой угол, при при умножении которого на n получается исходный угол АОВ, т.е.
n ( 10 аксиом геометрии треугольник AОB :n) = 10 аксиом геометрии треугольникAОB .
В качестве аксиомы принимается следующее свойство.
16. Любой угол можно разделить на n равных частей, n = 2,3, .
Два треугольника назовем равными, если стороны одного соответственно равны сторонам другого и углы, заключенные между соответственно равными сторонами, равны.
В качестве аксиомы принимается следующее свойство.
17. Каковы бы ни были треугольник и луч на плоскости, существует треугольник , равный данному, у которого первая вершина совпадает с вершиной луча, вторая – лежит на луче, а третья расположена в заданной полуплоскости относительно луча .
Аксиома параллельных формулируется в виде:
18. Через точку, не принадлежащую данной прямой, проходит не более одной прямой, параллельной данной.
Завершает аксиомы планиметрии один из вариантов аксиомы непрерывности.
19. Соответствие, при котором точкам координатной прямой сопоставляются их координаты, является взаимно однозначным соответствием между точками координатной прямой и действительными числами.
Отметим, что приведенная система аксиом является избыточной в том смысле, что некоторые последующие аксиомы перекрывают предыдущие. Например, из аксиомы об откладывании треугольника равного данному и признаков равенства треугольников следует, что все развернутые углы равны. Тем не менее авторы предпочли сформулировать аксиому о равенстве развернутых углов отдельно, поскольку она используется в самой первой теореме о равенстве вертикальных углов. Кроме этого, на ее основе строится процесс измерения величин углов.
То, что отрезок можно разделить на n равных частей является следствием аксиомы непрерывности или аксиомы параллельности. Авторы предпочли принять это свойство в качестве самостоятельной аксиомы, поскольку оно существенным образом используется при измерении длин отрезков, различных доказательствах и построениях.

Литература.
1. Энциклопедия элементарной математики, т. 4 Геометрия. М. 1963.
2. А.Д.Александров. Основания геометрии. М.: Наука, 1987.
3. А.В.Погорелов. Геометрия. М.: Наука, 1983.
4. Д.И.Перепелкин. Курс элементарной геометрии, ч II. М.: 1949.
5. Л.С.Атанасян и др. Геометрия 10-11. Учебник для 10-11 классов средней школы. М.: Просвещение, 1992.
6. И.М.Смирнова, В.А.Смирнов. Геометрия. Учебник для 7-9 классов общеобразовательных учреждений. М.: Просвещение, 2001.

Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Аксиомы геометрии и следствия из них

Основными аксиомами геометрии Евклида являются утверждения о том, что:

  • Через любые две точки проходит прямая, и притом только одна.
  • На любом луче от его начала можно отложить отрезок, равный данному, и притом только один.
  • От любого луча в заданную сторону можно отложить угол равный данному неразвернутому углу, и притом только один.
  • Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.
  • Каждой прямой принадлежат по крайней мере две точки.
  • Имеются по крайней мере три точки, не лежащие на одной прямой.
  • Через любые две точки проходит прямая, и притом только одна.

10 аксиом геометрии треугольник

Аксиомы о взаимном расположении точек и прямых

  • Из трех точек на прямой одна и только одна лежит между двумя другими.

В данной аксиоме подразумевается, что точки не совпадают.

Например, рассмотрим три различные точки прямой А, В и С. Точка В лежит между точками А и С. Также можно сказать:

  • точки А и В лежат по одну сторону от точки С
  • точки В и С лежат по одну сторону от точки А
  • точки А и С лежат по разные стороны от точки В

10 аксиом геометрии треугольник

Аксиома о расположении трех точек на прямой

  • Каждая точка О прямой разделяет ее на две части (два луча) так, что любые две точки одного и того же луча лежат по одну сторону от точки О, а любые две точки разных лучей лежат по разные стороны от точки О.

При этом точка О не принадлежит ни одному из указанных лучей.

10 аксиом геометрии треугольник

Аксиома о точке, которая делит прямую на части

  • Каждая прямая a разделяет плоскость на две части (две полуплоскости) так, что любые две точки одной и той же полуплоскости лежат по одну сторону от прямой a, а любые две точки разных полуплоскостей лежат по разные стороны от прямой a.

Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

При этом прямую a называют границей каждой из указанных полуплоскостей, и ее точки не принадлежат ни одной из этих полуплоскостей

10 аксиом геометрии треугольник

Аксиома о прямой и плоскости

  • Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой:

10 аксиом геометрии треугольник

  • Каждый угол имеет определенную градусную меру, большую нуля. Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами:

10 аксиом геометрии треугольник10 аксиом геометрии треугольник

Аксиомы об измерении отрезков и углов

  • На любой полупрямой (луче) от ее начальной точки можно отложить отрезок заданной длины, и при том только один.
  • От любой полупрямой (от любого луча) в заданную полуплоскость можно отложить угол с заданной мерой, меньшей 180°, и при том только один.

10 аксиом геометрии треугольник

Аксиомы геометрии об откладывании отрезков и углов

  • Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

10 аксиом геометрии треугольник

Точка С не лежит на прямой a, и через точку С проходит единственная прямая b, которая параллельна прямой a

Аксиома параллельных прямых

  • Если при наложении совмещаются концы двух отрезков, то совмещаются и сами отрезки.

10 аксиом геометрии треугольник

Совмещенные отрезки АВ и А1В1

Аксиомы о наложении и равенстве фигур

  • На любом луче от его начала можно отложить отрезок, равный данному, и притом только один.

Это означает, что если даны луч d с началом в точке О и отрезок AB, то на луче существует единственная точка С, такая, что отрезок АВ равен отрезку ОС.

Аксиомы о наложении и равенстве фигур

  • От любого луча в данную полуплоскость можно отложить угол, равный данному неразвернутому углу, и притом только один.

Это означает, что если даны луч ОК и неразвернутый угол BАС, то в каждой из двух полуплоскостей с границей ОК существует единственный луч ОТ, такой, что угол ВАС равен углу КОТ.

  1. ∠КОТ = ∠ВАС
  2. Аксиомы о наложении и равенстве фигур
  • Любой угол ab можно совместить наложением с равным ему углом a1b1 двумя способами:

Так, что луч a совместиться с лучом a1, а луч b – с лучом b1

Так, что луч a совместиться с лучом b1, а луч b – с лучом a1

  • Углы до наложения
  • 1 способ наложения равных углов
  • 2 способ наложения равных углов
  • Аксиомы о наложении и равенстве фигур
  • Любая фигура равна самой себе.
  • Если фигура F равна фигуре F1, то фигура F1 равна фигуре F.
  • Если фигура F равна фигуре F1, а фигура F1 равна фигуре F2, то фигура F равна фигуре F2.

Аксиомы о наложении и равенстве фигур

Видео:Аксиомы стереометрии и их следствия. 10 класс.Скачать

Аксиомы стереометрии и их следствия. 10 класс.

Основные аксиомы планиметрии. Виды углов

Важное замечание! Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

1. Основные понятия планиметрии

10 аксиом геометрии треугольник 10 аксиом геометрии треугольник

Почему все в картинках и без слов? А нужны ли слова? Мне кажется, на первых порах не очень нужны. Вообще-то, математики, конечно, умеют все описывать словами, и такие описания ты можешь найти в следующих уровнях теории, а сейчас продолжим картинками.

10 аксиом геометрии треугольник 10 аксиом геометрии треугольник 10 аксиом геометрии треугольник

Что же еще? Ах да, нам же нужно научиться измерять отрезки и углы.

У каждого отрезка есть длина – число, которое этому отрезку (зачем-то …) поставили в соответствие. Длину принято измерять … линейкой, конечно, в сантиметрах, миллиметрах, метрах и даже в километрах.

А теперь измерениеуглов. Углы почему-то принято измерять в градусах. Почему? На это есть исторические причины, но мы сейчас занимаемся не историей. Поэтому придется принять просто как должное следующее соглашение.

10 аксиом геометрии треугольник

В развернутом угле градусов.

Для краткости пишут: . При этом, конечно же, величину всех остальных углов можно найти, если выяснить, какую часть от развернутого угла составляет данный угол. Инструмент для измерения углов называется транспортир. Думаю, ты его уже не раз в жизни видел.

2. Два основных факта об углах

I. Смежные углы в сумме составляют .

10 аксиом геометрии треугольник

Это совсем естественно, не правда ли? Ведь смежные углы вместе составляют развернутый угол!

II. Вертикальные углы равны.

10 аксиом геометрии треугольник

Почему? А смотри:

10 аксиом геометрии треугольники – смежные . и – тоже смежные

Что теперь? Ну, конечно, отсюда следует, что . (Достаточно, например, вычесть из первого равенства второе. А вообще-то, можно просто посмотреть на картинку).

3. Прямой угол

10 аксиом геометрии треугольникЕсли угол равен смежному с ним, то он называется прямым углом.

Чему равна величина прямого угла?

Ну конечно, ! Ведь .

4. Острый и тупой угол

Углы, меньшие , называются острыми углами.
Углы от до называются тупыми углами.
Еще раз: угол в — прямойугол.

Вот, в общем-то и все, что тебе нужно знать для начала. Почему же мы ни слова не сказали об аксиомах?

Аксиомы – это правила действия с основными объектами планиметрии, самые первые утверждения о точках и прямых. Эти утверждения берутся за основу, не доказываются.

Почему же все-таки мы их не формулируем и не обсуждаем? Понимаешь, аксиомы планиметрии в некотором смысле просто описывают ясные интуитивно соотношения довольно длинным математическим языком.

Четкое осознание аксиоматики необходимо чуть позже, когда ты привыкнешь к геометрическим понятиям на уровне здравого смысла. Тогда – добро пожаловать в следующие уровни теории по этой теме – там есть довольно подробное обсуждение аксиом.

А пока попробуй поступать как совсем древние греки, до времен Евклида – просто решай задачи, пользуясь здравым смыслом. Уверяю тебя, множество задач тебе поддадутся!

Средний уровень

Представь, что ты вдруг очутился на другой планете, ну или… в компьютерной игре.

Перед тобой набор неизвестных продуктов, а твоя задача – приготовить из этого набора как можно больше вкусных блюд. Что тебе понадобится? Конечно же, правила, инструкции – что можно делать с теми или иными продуктами. А то вдруг ты сваришь то, что едят только в сыром виде или, наоборот, положишь в салат то, что непременно нужно варить или жарить? Так что, без инструкций – никуда!

Хорошо, но к чему такое вступление? Причем тут геометрия? Понимаешь, великое множество утверждений о всяких фигурах в геометрии и есть то самое множество «блюд», которые мы должны научиться готовить. Но из чего? Из основных объектов геометрии! А вот инструкция по их «употреблению» называется умными словами «система аксиом».

Так что, внимание!

Основные объекты и аксиомы планиметрии

Точка и прямая

Это и есть самые главные понятия планиметрии. Математики говорят, что это «неопределяемые понятия». Как так? А вот так, нужно же с чего-то начинать.

Теперь первые правила обращения с точками и прямыми. Эти правила математики называют «аксиомы» — утверждения, которые принимаются за основу , из которых потом все основное будет выводиться (помнишь, что у нас большая кулинарная миссия по «приготовлению» геометрии?). Так вот, первая серия аксиом называется

I. Аксиомы принадлежности

Аксиома 1.1. Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей.
  • Обрати внимание, эта аксиома позволяет рисовать так:
  • и так:
Аксиома 1.2. Через любые две точки можно провести прямую, и только одну.
  1. Вот так: было две точки:
  2. И тут же нашлась прямая:
  3. А другой – нет!
  4. Если тебе все это кажется слишком очевидным, то вспомни, что ты – на другой планете и до сих пор совершенно не знал, что делать с объектами «точка» и «прямая».

Луч, отрезок, угол

Вот теперь мы научились наносить точки на прямые и проводить прямые через точки, поэтому уже можем приготовить первые простейшие «блюда» — луч, отрезок, угол.

1) ЛУЧ

Любая точка, лежащая на прямой, делит эту прямую на две полупрямые. Каждая из этих полупрямых называется еще лучом.
  • Вот он, луч:

2) ОТРЕЗОК

Любые две точки на прямой ограничивают отрезок прямой.

3) УГОЛ

Углом называется часть плоскости, заключенная между двумя лучами этой плоскости, имеющими общее начало.
Лучи, образующие угол, называются сторонами угла а их общее начало – вершиной угла.
Угол, образованный дополнительными лучами, называется развернутым.

Видео:Геометрия 7 класс (Урок№10 - Первый признак равенства треугольников.)Скачать

Геометрия 7 класс (Урок№10 - Первый признак равенства треугольников.)

Некоторые следствия из аксиом стереометрии

На прошлом уроке мы с вами познакомились с аксиомами стереометрии. Давайте еще раз повторим их.

  • Первая аксиома звучит так: Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
  • Вторая аксиома звучит так: Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости.
  • Третья аксиома звучит так: Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

Сегодня на уроке мы сформулируем и докажем некоторые следствия из этих аксиом. По аналогии с аксиомами следствия мы будем обозначать заглавной буквой С с нижним индексом.

Итак, первое следствие звучит так: Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна.

Докажем это. Рассмотрим прямую a и не лежащую на ней точку B. Нам необходимо доказать, что через прямую a и точку B проходит плоскость. Отметим на прямой a две точки C и D.

Точки B, C, D не лежат на одной прямой, поэтому согласно первой аксиоме, (а именно, тому что через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна) через эти точки проходит некоторая плоскость α.

Поскольку точки C и D прямой a лежат в плоскости, то по второй аксиоме (если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости) вся прямая a лежит в плоскости α.

10 аксиом геометрии треугольник

Теперь давайте докажем единственность этой плоскости. Любая плоскость, которая проходит через прямую a и точку B проходит через точки B, C, D. То есть она совпадает с плоскостью α, поскольку по первой аксиоме, плоскость, которая проходит через три точки, не лежащие на одной прямой – единственная.

  1. Теперь давайте сформулируем и докажем второе следствие.
  2. Через две пересекающиеся прямые проходит плоскость, и притом только одна.
  3. Доказательство.

Рассмотрим прямые a и b, которые пересекаются в точке А. Тогда нам необходимо доказать, что через эти прямые проходит плоскость, и притом только одна.

Отметим на прямой b точку B, не совпадающую с точкой А. Тогда из первого следствия, через прямую a и точку B можно провести плоскость α.

Так как точки А и B прямой b лежат в плоскости α, то по второй аксиоме мы получим, что вся прямая b лежит в плоскости α.

Поскольку через прямую и не лежащую на ней точку можно провести только одну плоскость, то значит, любая плоскость, проходящая через прямые a и b совпадает с плоскостью α.

10 аксиом геометрии треугольник

Таким образом, наша теорема доказана.

Решим несколько задач.

Задача. Две прямые пересекаются в точке . Доказать, что все прямые, которые пересекают данные прямые и не проходят через точку , лежат в одной плоскости.

По второму следствию из аксиом стереометрии через две пересекающиеся прямые проходит плоскость, и притом только одна. Значит, через данные прямые проведем плоскость альфа.

10 аксиом геометрии треугольник

Проведем прямую, которая будет пересекать прямые, но не проходит через точку B. Эта прямая с каждой из данных прямых имеет по одной общей точке. Эти точки принадлежат построенной плоскости, поскольку прямые принадлежат этой плоскости.

Получаем, что две точки прямой принадлежат плоскости, значит, по второй аксиоме, вся прямая лежит в этой же плоскости.

Поскольку прямую мы проводили произвольно, то, очевидно, что каждая из прямых, которые будут пересекать исходные прямые будет лежать в этой же плоскости, что и требовалось доказать.

Задача. Верно ли утверждение: а) если две точки окружности лежат в плоскости, то и вся окружность лежит в этой плоскости; б) если три точки окружности лежат в плоскости, то и вся окружность лежит в этой плоскости?

Первое утверждение неверно, так как окружность и плоскость имеют две общие точки, если они пересекаются. То есть окружность не лежит в плоскости, а только пересекает ее.

10 аксиом геометрии треугольник

Перейдем ко второму утверждению. По первой аксиоме через три точки, не лежащих на одной прямой можно провести плоскость и притом только одну.

Точки окружности не могут лежать на одной прямой, поэтому проведем через них плоскость.

Очевидно, что эти точки лежат в плоскости окружности, но поскольку аксиома говорит о том, что такая плоскость единственная, значит, окружность будет принадлежать этой плоскости. То есть второе утверждение верно.

10 аксиом геометрии треугольник

Задача. Пусть точки не лежат на одной прямой. Отметим на прямой точку , а на прямой – точку . Доказать, что точка прямой лежит в плоскости .

По первой аксиоме через точки А, B, C проведем плоскость α. Так как прямая АB лежит в плоскости α, значит, точка D лежит в плоскости α.

Аналогично, поскольку прямая АC лежит в плоскости α, то и точка Е лежит в плоскости α. Получаем, что две точки прямой DE лежат в плоскости α. Применим вторую аксиому и получим, что вся прямая DE лежит в плоскости α.

Тогда точка F прямой DE тоже лежит в плоскости α. Что и требовалось доказать.

Задача. Пусть стороны и треугольника лежат в плоскости . Доказать, что и медиана лежит в плоскости .

Поскольку стороны AB и АC лежат в плоскости α, значит, точки B и C лежат в этой плоскости, то есть, по второй аксиоме, сторона BC тоже лежит в этой плоскости. Точка M лежит на прямой BC, значит, она лежит в плоскости α, что и требовалось доказать.

Подведем итоги урока. Итак, сегодня на уроке мы повторили аксиомы стереометрии, сформулировали и доказали некоторые следствия из аксиом и рассмотрели задачи, на использование аксиом и следствий из них.

Видео:10 класс, 2 урок, Аксиомы стереометрииСкачать

10 класс, 2 урок, Аксиомы стереометрии

Что такое аксиома и теорема

Решение всех задач в геометрии построено на логических рассуждениях. С их помощью мы решаем задачи или выводим новые доказательства.

Некоторые из утверждений в геометрии мы используем не задумываясь. Вспомним высказывание, которое мы слышим при самом первом знакомстве с геометрией: «Через две точки можно провести прямую, и притом только одну».

Чтобы лучше понять сказанное, нарисуем наглядный рисунок, где прямая a пересекает точки A и B.

10 аксиом геометрии треугольник

Казалось бы, очевидно, если попытаться провести еще одну прямую b через точки A и B, она совпадет с прямой a.

10 аксиом геометрии треугольник

Но можно ли считать подобное рассуждение доказательством?

Дело в том, что утверждение, которое в своем доказательстве не опирается на выстроенную логическую цепочку доказательств, нельзя считать доказанным.

Другими словами, утверждение «Через две точки можно провести прямую, и притом только одну» не является доказанным только потому, что мы нарисовали рисунок и по рисунку «на глаз» стало все понятно.

В геометрии действует принцип: «Не верь глазам своим, пока не докажешь утверждение с помощью рассуждений».

Но что нам в таком случае делать? Ведь при решении задач мы используем какие-то очевидные утверждения, не задумываясь об их истинности.

Нам остается, только принять их на веру без доказательств. Иначе мы не сможем доказывать следующие утверждения, чтобы двигаться дальше.

Что такое аксиома

Слово аксиома произошло от древнегреческого слова «axioma» — утверждение, положение.

Аксиома — утверждение, которое не требует доказательств.

С точки зрения учащихся, аксиома — лёгкий способ получить отличную оценку. Достаточно просто выучить формулировку. Ведь никаких доказательств для аксиомы учить не требуется.

Всего в геометрии насчитывается около 15 аксиом. В школьном курсе используются далеко не все. Некоторые из них используются в школьном курсе как само собой разумеющееся для нас. Приведем некоторые примеры довольно известных аксиом из школьного курса геометрии:

  • через любые две точки проходит прямая, и притом только одна;
  • через точку, не лежащую на данной прямой, проходим только одна прямая, параллельная данной;
  • если при наложении совмещаются концы двух отрезков, то совмещаются и сами отрезки;
  • любая фигура равна самой себе.

Совсем по-другому обстоят дела с теоремами. Слово теорема происходит от древнегреческого слова «theorema» — смотреть, рассматривать какое-либо утверждение.

Теорема — утверждение, которое требует доказательства.

Теоремы менее «любимы» учащимися, чем аксиомы. Если учитель попросит рассказать теорему, будет недостаточно, как для аксиомы, сообщить только её формулировку. Потребуется также дать доказательство теоремы.

Примеры формулировок теорем:

  • сумма углов треугольника равна 180 градусов;
  • площадь прямоугольника равна произведению его смежных сторон;
  • теорема Пифагора. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Формулировки аксиом и теорем необходимо учить строго наизустьбез искажений.

Каждое слово или предлог в формулировке играет существенную роль в передаче смысла выражения. Даже просто поменяв порядок слов можно сильно изменить смысл утверждения.

Помните, что все формулировки в геометрии были выверены несколькими тысячами лет развития математики лучшими умами планеты и не терпят никаких словесных изменений.

Что такое лемма

Среди теорем выделяют такие теоремы, которые сами по себе не используются в решениях задач. Но их используют для доказательства других теорем.

Лемма происходит от древнегреческого слова «lemma» – предположение.

Лемма — это вспомогательная теорема, с помощью которой доказываются другие теоремы.

  • если одна из двух параллельных прямых пересекает плоскость, то и вторая прямая тоже пересекает эту плоскость.

Что такое следствие в геометрии

Следствие — утверждение, которое выводится непосредственно из аксиомы или теоремы. Следствие, как и теорему, необходимо доказывать.

Приведем примеры следствий из аксиомы о параллельности прямых:

  • если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую;
  • если две прямые параллельны третьей прямой, то они параллельны.

Если подытожить все вышесказанное, то сравнивая геометрию с высотным домом, можно представить, что:

  • аксиомы — фундамент дома;
  • теоремы — основные кирпичи дома;
  • леммы и следствия — вспомогательные кирпичи для упрочнения конструкции.

10 аксиом геометрии треугольник

Каждая доказанная теорема служит основанием доказательства для следующей теоремы. Именно поэтому так важно изучать геометрию последовательно, переходя с самых основ (аксиом) к теоремам.

Невозможно понять геометрию 9 и 10 класса, не выучив аксиомы и теоремы 7 и 8 класса.

Видео:7 класс, 27 урок, Об аксиомах геометрииСкачать

7 класс, 27 урок, Об аксиомах геометрии

Аксиомы геометрии

Аксиомаисходное положение о свойствах геометрических фигур, которое принимается без доказательстваи на основе которого далее доказываются теоремы и вообще строится вся геометрия. Все аксиомы являются наглядно очевидными и не вызывают сомнений.

Геометрия, в которой сначала формулируются исходные положения — аксиомы, а затем на их основе путем логических рассуждений доказываются другие утверждения, называется евклидовой геометрией.

К аксиомам относятся следующие утверждения:

Аксиомы о взаимном расположении точек и прямой

  1. Каждой прямой принадлежит по крайней мере две точки.
  2. Имеются по крайней мере три точки, не лежащие на одной прямой.
  3. Через любые две точки проходит прямая, и притом только одна.
  4. Из трех точек прямой одна и только одна лежит между двумя другими.
  5. Каждая точка О прямой разделяет ее на две части (два луча) так, что любые две точки одного и того же луча лежат по одну сторону от точки О, а любые две точки разных лучей лежат по разные стороны от точки О.
  6. Каждая прямая разделяет плоскость на две части (две полуплоскости) так, что любые две точки одной и той же полуплоскости лежат по одну сторону от прямой , а любые две точки разных полуплоскостей лежат по разные стороны от прямой .

Аксиомы о наложении и равенстве фигур

  1. Если при наложении совмещаются концы двух отрезков, то совмещаются и сами отрезки.
  2. На любом луче от его начала можно отложить отрезок, равный данному и притом только один.
  3. От любого луча в заданную сторону можно отложить угол, равный данному неразвернутому углу, и притом только один.
  4. Любой угол hk можно совместить наложениемс равным ему углом h1k1 двумя способами: 1) так, что луч h совместится с лучом h1, а луч k — с лучом k1; 2) так, что луч h совместится с лучом k1, а луч k — с лучом h1.
  5. Любая фигура равна самой себе.
  6. Если фигура Ф равна фигуре Ф1, то фигура Ф1 равна фигуре Ф.
  7. Если фигура Ф1 равна фигуре Ф2, а фигура Ф2 равна фигуре Ф3, то фигура Ф1равна фигуре Ф3.

Аксиомы об измерении отрезков

  1. При выбранной единице измерения отрезков длина каждого отрезка выражается положительным числом.
  2. При выбранной единице измерения отрезков для любого положительного числа существует отрезок, длина которого выражается этим числом.

Аксиома параллельности

  1. Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Поделись с друзьями в социальных сетях:

Советуем посмотреть:

  • Параллельные прямые
  • Признаки параллельности двух прямых
  • Практические способы построения параллельных прямых
  • Аксиома параллельных прямых
  • Теорема о накрест лежащих углах
  • Теорема о соответственных углах
  • Теорема об односторонних углах
  • Теорема об углах с соответственно параллельными сторонами
  • Теорема об углах с соответственно перпендикулярными сторонами
  • Параллельные прямые

Правило встречается в следующих упражнениях:

  1. 7 класс
  2. Задание 7, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
  3. Задание 9, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
  • © budu5.com, 2020
  • Пользовательское соглашение
  • Copyright
  • Нашли ошибку?
  • Связаться с нами

Видео:10 класс, 3 урок, Некоторые следствия из аксиомСкачать

10 класс, 3 урок, Некоторые следствия из аксиом

презентация к уроку «Аксиомы стереометрии. Следствия из аксиом» презентация к уроку по геометрии (10 класс) по теме

  • Слайд 1
  • Слайд 2
  • Геометрия Планиметрия Стереометрия Stereos : телесный, твердый, объемный, пространственный
  • Слайд 3

Аксиомы стереометрии Некоторые следствия из аксиом

Стереометрия Раздел геометрии, в котором изучаются свойства фигур в пространстве. Основные фигуры в пространстве: А Точка. а Прямая. Плоскость.

  1. Слайд 4
  2. Обозначения: точка прямая плоскость A, B, C, … a, b, c, … или A В , B С , CD, …
  3. Слайд 5
  4. Геометрические тела: Куб Параллелепипед Тетраэдр
  5. Слайд 6
  6. Геометрические понятия . Плоскость – грань Прямая – ребро Точка – вершина вершина грань ребро
  7. Слайд 7
  8. Аксиома ( от греч. ax íõ ma – принятие положения) исходное положение научной теории, принимаемое без доказательства
  9. Слайд 8

Характеризуют взаимное расположение точек и прямых 1. Каждой прямой принадлежат по крайней мере две точки 2. Имеются по крайней мере три точки, не лежащие на одной прямой 3. Через любые две точки проходит прямая, и притом только одна. Основное понятие геометрии «лежать между» 4.

Из трех точек прямой одна и только одна лежит между двумя другими. А1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна А2 . Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости А3.

Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей .

  • Слайд 9
  • А3. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей
  • Слайд 10
  • Аксиомы стереометрии описывают: А1 Способ задания плоскости А2 Взаимное расположение прямой и плоскости А3 Взаимное расположение плоскостей
  • Слайд 11

Следствия из аксиом стереометрии Следствие Чертеж Формулировка № 1 № 2 Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна. Через две пересекающиеся прямые проходит плоскость, и притом только одна.

Способы задания плоскости g 1. Плоскость можно провести через три точки. g 2. Можно провести через прямую и не лежащую на ней точку. Аксиома 1 Теорема 1 g Теорема 2 3. Можно провести через две пересекающиеся прямые. А 1

Взаимное расположение прямой и плоскости. Прямая лежит в плоскости. Прямая не пересекает плоскость. Сколько общих точек в каждом случае? g а g а М g а а Ì g а Ç g = М а Ë g А 2 Прямая пересекает плоскость .

  1. Слайд 14
  2. Пользуясь данным рисунком, назовите: а) четыре точки, лежащие в плоскости SAB , в плоскости АВС; б) плоскость, в которой лежит прямая MN , прямая КМ; в) прямую, по которой пересекаются плоскости ASC и SBC , плоскости SAC и CAB . К А В М S N C
  3. Слайд 15
  4. Пользуясь данным рисунком, назовите: а) две плоскости, содержащие прямую DE , прямую EF б) прямую, по которой пересекаются плоскости DEF и SBC ; плоскости FDE и SAC ; в) две плоскости, которые пересекает прямая SB ; прямая AC . А С В S D F E
  5. Слайд 16
  6. Пользуясь данным рисунком, назовите: три плоскости, содержащие прямую В 1 С; прямую АВ 1; C 1 C A 1 B 1 D 1 A B D
  7. Слайд 17
  8. А А 1 В В 1 С D 1 D C 1 В 1 С ?
  9. Слайд 18
  10. А А 1 В В 1 С D 1 D C 1 В 1 С ?

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Основные понятия и аксиомы стереометрии

  • ПЕРВУШКИН БОРИС НИКОЛАЕВИЧ
  • ЧОУ «Санкт-Петербургская Школа «Тет-а-Тет»
  • Учитель Математики Высшей категории
  • Основные понятия и аксиомы стереометрии

Стереометрия — это раздел геометрии, в котором изучаются свойства фигур в пространстве. Слово «стереометрия» происходит от греческих слов «στερεοσ» — объемный, пространственный и «μετρεο» — измерять.

Простейшие фигуры в пространстве: точка, прямая, плоскость.

Представление о плоскости дает гладкая поверхность стола или стены. Плоскость как геометрическую фигуру следует представлять себе простирающейся неограниченно во все стороны.

На рисунках плоскости изображаются в виде параллелограмма или в виде произвольной области и обозначаются греческими буквами α, β, γ и т.д. Точки А и В лежат в плоскости β (плоскость β проходит

через эти точки), а точки M, N, P не лежат в этой плоскости. Коротко

это записывают так: А ∈ β, B ∈ β,

  1. Аксиомы стереометрии и их следствия
  2. Аксиома 1.
  3. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.

Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости. (Прямая лежит на плоскости или плоскость проходит через прямую).

Из аксиомы 2 следует, что если прямая не лежит в данной плоскости, то она имеет с ней не более одной общей точки. Если прямая и плоскость имеют одну общую точку, то говорят, что они пересекаются.

  • Аксиома 3.
  • Если две различные плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.
  • В таком случае говорят, плоскости пересекаются по прямой.
  • Пример: пересечение двух смежных стен, стены и потолка комнаты
  1. .
  2. НЕКОТОРЫЕ СЛЕДСТВИЯ ИЗ АКСИОМ
  3. Теорема 1.
  4. Через прямую a и не лежащую на ней точку А проходит плоскость, и притом только одна.

Через две пересекающиеся прямые a и b проходит плоскость, и при том только одна.

Видео:Геометрия 10 класс (Урок№1 - Треугольники.)Скачать

Геометрия 10 класс (Урок№1 - Треугольники.)

Аксиомы элементарной геометрии

Существует три различных множества объектов; объекты первого множества называются точками, объекты второго — прямыми, объекты третьего — плоскостями. Множество всех точек, прямых и плоскостей называется пространством. Причем

между этими объектами, а также их группами могут существовать известные соотношения, которые обозначаются словами принадлежит, лежит между, конгруэнтен;

указанные соотношения должны удовлетворять двадцати аксиомам, перечисленным ниже;

в остальном природа объектов и соотношений между ними может быть произвольной.

Аксиомы делятся на пять групп:

Соотношение принадлежит определено только между точками и прямыми, либо между точками и плоскостями, либо между прямыми и плоскостями.

Условимся, что соотношение принадлежит будет выражаться одним из следующих способов: точка принадлежит прямой , точка лежит на прямой , точка является точкой прямой , прямая проходит через точку . Или: точка принадлежит плоскости , точка лежит на плоскости , точка является точкой плоскости , плоскость проходит через точку и т.д.

  1. Каковы бы ни были две точки и , существует прямая , которой принадлежат обе эти точки.
  2. Каковы бы ни были две различные точки и , существует не более одной прямой, которой принадлежат эти точки.

Каждой прямой принадлежат по крайней мере две точки. Существует по крайней мере три точки, не принадлежащие одной прямой.

Существуют по крайней мере четыре точки, не принадлежащие одной плоскости.

Замечание 1. Аксиомы 1–3 исчерпывают список аксиом принадлежности планиметрии.

Теорема 1. Две различные прямые не могут иметь больше одной общей точки.

Теорема 2. Две различные плоскости либо совсем не имеют общих точек, либо имеют общую прямую, на которой лежат все их общие точки.

Теорема 3. Плоскость и не принадлежащая ей прямая не могут иметь более одной общей точки.

Теорема 4. Через прямую и не лежащую на ней точку или через две различные прямые с общей точкой проходит одна и только одна плоскость.

Теорема 5. Каждая плоскость содержит по крайней мере три точки.

Соотношение лежит между определено только для трех точек, принадлежащих прямой.

Определение 1. Пару точек и назовем отрезком и будем обозначать или . Точки, лежащие между и , назовем внутренними точками или просто точками отрезка , точки и — концами отрезка. Все остальные точки прямой 3) будем называть внешними по отношению к отрезку .

  1. Если точка лежит между точками и , то , и — различные точки одной прямой, причем лежит также и между и .
  2. Каковы бы ни были две различные точки и , на определяемой ими прямой существует по крайней мере одна точка такая, что лежит между и .

Среди любых трех различных точек одной прямой существует не более одной точки, лежащей между двумя другими.

  • ( Аксиома Паша ) Если , и — три точки, не лежащие на одной прямой, и — некоторая прямая, принадлежащая плоскости, определяемой этими тремя точками, не содержащая ни одной из этих точек и проходящая через некоторую точку отрезка , то эта прямая проходит также либо через некоторую точку отрезка , либо через некоторую точку отрезка .
  • Замечание 2. Аксиомы 1–3 называются линейными аксиомами порядка.

    Определение 2. Будем говорить, что две различные точки и прямой лежат по разные стороны ( лежат по одну сторону) от точки той же прямой, если точка (не) лежит между и .

    Теорема 6. Произвольная точка некоторой прямой разбивает все остальные точки этой прямой на два непустых класса так, что любые две точки, принадлежащие одному и тому же классу, лежат по одну сторону от , а любые две точки, принадлежащие разным классам, лежат по разные стороны от .4)

    Определение 3. Для заданных точек и прямой полупрямой или лучом будем называть класс всех точек, содержащих точку и лежащих по одну сторону от точки . Все точки этого класса называются точками полупрямой . Точка при этом называется началом полупрямой .

    Теорема 7. Каждая прямая , расположенная в плоскости , разделяет не лежащие на ней точки этой плоскости на два не пустых класса так, что любые две точки и из разных классов определяют отрезок , содержащий точку прямой , а любые две точки и из одного класса определяют отрезок , внутри которого не лежит ни одна точка прямой .

    Определение 4. Используя обозначения формулировки теоремы 7, будем говорить, что точки и лежат по одну сторону прямой , а точки и лежат по разные стороны прямой .

    Определение 5. Пара полупрямых и с началом в общей точке называется углом, если не все точки этих полупрямых лежат на одной прямой. Для обозначения угла используются знаки или . Если полупрямые задаются указанием точек: и , то угол обозначается символом .

    Определение 6. Внутренними точками будем называть те точки плоскости , которые одновременно

    • лежат по ту сторону от прямой, содержащей луч , что и любая точка луча ,
    • лежат по ту сторону от прямой, содержащей луч , что и любая точка луча .

    Термин конгруэнтен, или равен, используется для задания соотношений между отрезками или между углами.

    1. Если и — две точки на прямой , — точка на той же прямой или на другой прямой , то по данную от точки сторону прямой 5) найдется, и притом только одна, точка такая, что отрезок конгруэнтен отрезку . Каждый отрезок конгруэнтен отрезку .
    2. Если отрезки и конгруэнтны одному и тому же отрезку , то они конгруэнтны между собой.
    3. Пусть и — два отрезка прямой , не имеющие общих внутренних точек, и — два отрезка той же прямой или другой прямой , также не имеющие общих внутренних точек. Тогда, если отрезок конгруэнтен отрезку , а отрезок конгруэнтен отрезку , то отрезок конгруэнтен отрезку .
    4. Пусть даны на плоскости , прямая на этой же или на какой-либо другой плоскости и задана определенная сторона плоскости относительно прямой . Пусть — луч прямой , исходящий из некоторой точки . Тогда на плоскости существует один и только один луч такой, что конгруэнтен и при этом все внутренние точки лежат по заданную сторону от прямой . Каждый угол конгруэнтен самому себе.
    5. Пусть , и — три точки, не лежащие на одной прямой, , и — три другие точки, также не лежащие на одной прямой. Тогда, если отрезок конгруэнтен отрезку , отрезок конгруэнтен отрезку и конгруэнтен , то конгруэнтен и конгруэнтен .
    1. ( Аксиома Архимеда ) Пусть и — произвольные отрезки. Тогда на прямой, определяемой точками и , существует конечное число точек , , , , расположенных так, что точка лежит между и , точка лежит между и , … , точка лежит между и , причем отрезки , , … , конгруэнтны отрезку и точка лежит между и .
    2. ( Аксиома линейной полноты ) Совокупность всех точек произвольной прямой нельзя пополнить новыми объектами (точками) так, чтобы:
      1. на пополненной прямой были определены соотношения лежит между и конгруэнтны, определен порядок следования точек и справедливы аксиомы конгруэнтности 1-3 и аксиома Архимеда;
      2. по отношению к преждним точкам прямой определенные на пополненной прямой соотношения лежит между и конгруэнтны сохраняли старый смысл.
    1. Пусть — произвольная прямая и — точка, лежащая вне прямой , тогда в плоскости , определяемой точкой и прямой 6), существует не более одной прямой, проходящей через и не пересекающей .

    аналитическая геометрия,, аксиома архимеда, аксиома линейной полноты, аксиома паша, аксиоматика, аксиомы элементарной геометрии

    Видео:Треугольники. 7 класс.Скачать

    Треугольники. 7 класс.

    Что такое аксиома, теорема и доказательство теоремы

    10 аксиом геометрии треугольник

    О чем эта статья:

    Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

    Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

    Понятие аксиомы

    Аксиома — это правило, которое считают верным и которое не нужно доказывать. В переводе с греческого «аксиома» значит принятое положение — то есть взяли и договорились, что это истина, с которой не поспоришь.

    Аксиоматический метод — это подход к получению знаний, при котором сначала разрабатывают аксиомы, а потом с их помощью формулируют новые теории.

    Синоним аксиомы — постулат. Антоним — гипотеза.

    Основные аксиомы евклидовой геометрии

    1. Через любые две точки проходит единственная прямая.
    2. Каждая точка на прямой разбивает эту прямую на две части так, что точки из разных частей лежат по разные стороны от данной точки. А точки из одной части лежат по одну сторону от данной точки.
    3. На любом луче от его начала можно отложить только один отрезок, равный данному.
    4. Отрезки, полученные сложением или вычитанием соответственно равных отрезков — равны.
    5. Каждая прямая на плоскости разбивает эту плоскость на две полуплоскости. При этом если две точки принадлежат разным частям, то отрезок, который соединяет эти две точки, пересекается с прямой. Если две точки принадлежат одной части, то отрезок, соединяющий эти точки, не пересекается с прямой.
    6. От любого луча на плоскости в заданную сторону можно отложить только один угол, который равен данному. Все развернутые углы равны.
    7. Углы равны, если они получились путем сложения или вычитания соответственно равных углов.

    Учить наизусть эти аксиомы не обязательно. Главное — помнить о них и держать под рукой, чтобы при доказательстве теоремы сослаться на одну из них.

    А теперь давайте рассмотрим несколько аксиом из геометрии за 7 и 8 класс.

    Самая известная аксиома Евклида — аксиома о параллельных прямых. Звучит она так:

    Это значит, что если дана прямая и любая точка, которая не лежит на этой прямой, то через неё можно провести только одну единственную прямую, которая будет параллельна этой первой данной прямой.

    10 аксиом геометрии треугольник

    У этой аксиомы два следствия:

    • прямая, которая пересекает одну параллельную прямую, обязательно пересекает и другую; 10 аксиом геометрии треугольник
    • если две прямые параллельны третьей, то между собой они также параллельны. 10 аксиом геометрии треугольник

    Аксиома Архимеда заключается в том, что, если отложить достаточное число раз меньший из двух отрезков, то можно покрыть больший из них. Звучит так:

    Если на прямой есть меньший отрезок А и больший отрезок B, то, можно сложить А достаточное количество раз, чтобы покрыть B.

    На картинке можно увидеть, как это выглядит:

    10 аксиом геометрии треугольник

    Из этого следует, что не существует бесконечно малых и бесконечно больших величин. В качестве математической формулы аксиому можно записать так: А + А + … + А = А * n > В, где n — это натуральное число.

    Видео:АКСИОМЫ СТЕРЕОМЕТРИИ / Геометрия 10 классСкачать

    АКСИОМЫ СТЕРЕОМЕТРИИ / Геометрия 10 класс

    Понятие теоремы

    Что такое аксиома мы уже поняли, теперь узнаем определение теоремы.

    Теорема — логическое следствие аксиом. Это утверждение, которое основано на аксиомах и общепринятых утверждениях, которые были доказаны ранее, и доказывается на их основе.

    Состав теоремы: условие и заключение или следствие.

    Среди теорем выделяют такие, которые сами по себе не используются в решениях задач. Но их используют для доказательства других теорем.

    Лемма — это вспомогательная теорема, с помощью которой доказываются другие теоремы. Пример леммы: если одна из двух параллельных прямых пересекает плоскость, то и вторая прямая тоже пересекает эту плоскость.

    Следствие — утверждение, которое выводится из аксиомы или теоремы. Следствие, как и теорему, необходимо доказывать.

    Примеры следствий из аксиомы о параллельности прямых:

    • если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую;
    • если две прямые параллельны третьей прямой, то они параллельны.

    Доказательство теоремы — это процесс обоснования истинности утверждения.

    Каждая доказанная теорема служит основанием доказательства для следующей теоремы. Именно поэтому так важно изучать геометрию последовательно, переходя от аксиом к теоремам.

    Способы доказательства геометрических теорем

    • Синтетический или синтез — метод, при котором данное предложение выступает, как необходимое следствие другого, уже доказанного.
    • Аналитический или анализ — обратный синтезу способ. Рассуждения всегда начинаются с доказываемой теоремы и закачиваются другой известной истиной.

    Часть аналитического способа — доказательство от противного, когда для доказательства данного предложения убеждают в невозможности предположения противоположного.

    Приемы для доказательства в геометрии:

    • Способ наложения — когда одну геометрическую величину накладывают на другую. Этим способом убеждаются в равенстве или неравенстве геометрических протяжений в зависимости от того, совмещаются они или нет при наложении.
    • Способ пропорциональности — применение свойств пропорций. Этот способ пригодится для доказательства теорем про подобные фигуры и пропорциональные отрезки.
    • Способ пределов — когда вместо данной величины берут свойства другой, близкой к ней. А потом перекладывают эти выводы на исходные данные.

    Обратная теорема — это такой перевертыш: в ней условие исходной теоремы дано заключением, а заключение — условием.

    Прямая и обратная теорема взаимно-обратные. Например:

    • прямая теорема: в треугольнике против равных сторон лежат равные углы.
    • обратная теорема: в треугольнике против равных углов лежат равные стороны.

    В первой теореме данное условие — это равенство сторон треугольника, а заключение — равенство противолежащих углов. А во второй всё наоборот.

    Противоположная теорема — это утверждение, в котором из отрицания условия вытекает отрицание заключения.

    Вот, как выглядит взаимное отношение теорем на примере:

    • Прямая: если при пересечении двух прямых третьей соответственные углы равны, то данные прямые параллельны.
    • Обратная: если две прямые параллельны, то при пересечении их третьей, соответственные углы равны.
    • Противоположная: если при пересечении двух прямых третьей соответственные углы не равны, прямые не параллельны.
    • Обратная противоположной: если прямые не параллельны, соответственные углы не равны.

    В геометрическом изложении достаточно доказать только две теоремы, тогда остальные справедливы без доказательства.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

    Видео:Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать

    Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)

    Теоремы без доказательств

    Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

    Доказательств может быть несколько. Одно из них звучит так: если построить квадраты на сторонах прямоугольного треугольника, то площадь большего из них равна сумме площадей меньших квадратов. На картинке понятно, как это работает:

    10 аксиом геометрии треугольник

    Теорема косинусов: квадрат одной стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними. В виде формулы это выглядит так:

    10 аксиом геометрии треугольник

    где a, b и c — стороны плоского треугольника,

    α — угол, противолежащий стороне а.

    10 аксиом геометрии треугольник

    Следствия из теоремы косинусов:

    10 аксиом геометрии треугольник

    • при b² + c² – a² > 0 угол α будет острым;
    • при b² + c² – a² = 0 угол α будет прямым, что соответствуем теореме Пифагора;
    • при b² + c² – a²

    Видео:Аксиомы стереометрии. 10 класс.Скачать

    Аксиомы стереометрии. 10 класс.

    Понятия свойств и признаков

    У нас есть список аксиом и мы уже знаем, что такое теорема и как ее доказывать. Есть два типа утверждений среди теорем, которые часто встречаются при изучении новых фигур: свойства и признаки.

    Свойства и признаки — понятия из обычной жизни, которые мы часто используем.

    Свойство — такое утверждение, которое должно выполняться для данного типа объектов. У ноутбука есть клавиатура — это свойство есть у каждого ноутбука. А у электронной книги такого свойства нет.

    Примеры геометрических свойств мы уже знаем: у квадрата все стороны равны. Это верно для любого квадрата, поэтому это — свойство.

    Такое свойство можно встретить у другого четырехугольника. И клавиатура может быть на других устройствах, помимо ноутбука. Из этого следует, что свойства не обязательно должны быть уникальными.

    Признак — это то, по чему мы однозначно распознаем объект.

    Звезды в темном небе — признак того, что сейчас ночь. Если человек ходит с открытым зонтом — это признак того, что сейчас идет дождь. При этом ночью не обязательно должны быть видны звезды, иногда может быть облачно. Значит это не свойство ночи.

    А теперь вернемся к геометрии и рассмотрим четырехугольник ABCD, в котором AB = BD = 10 см.

    Является ли равенство диагоналей признаком прямоугольника? У такого четырехугольника, где AB = BD, диагонали равны, но он не является прямоугольником. Это свойство, но не его признак.

    10 аксиом геометрии треугольник

    Но если в четырехугольнике противоположные стороны параллельны AB || DC и AD || BC и диагонали равны AB = BD, то это уже верный признак прямоугольника. Смотрите рисунок:

    10 аксиом геометрии треугольник

    Иногда свойство и признак могут быть эквивалентны. Лужи — это верный признак дождя. У других природных явлений не бывает луж. Но если приходит дождь, то лужи на асфальте точно будут. Значит, лужи — это не только признак, но и свойство дождя.

    Такие утверждения называют необходимым и достаточным признаком.

    📹 Видео

    Стереометрия - это ПРОСТО! Урок 1. Аксиомы Теоремы Задачи. Геометрия 10 классСкачать

    Стереометрия -  это ПРОСТО! Урок 1. Аксиомы  Теоремы  Задачи.  Геометрия 10 класс

    10 класс, 14 урок, Задачи на построение сеченийСкачать

    10 класс, 14 урок, Задачи на построение сечений

    АКСИОМЫ СТЕРЕОМЕТРИИ 10 класс стереометрияСкачать

    АКСИОМЫ СТЕРЕОМЕТРИИ 10 класс стереометрия

    Параллельные прямые | Математика | TutorOnlineСкачать

    Параллельные прямые | Математика | TutorOnline

    Бестселлер Все правила по геометрии за 7 классСкачать

    Бестселлер Все правила по геометрии за 7 класс
    Поделиться или сохранить к себе: