Вычисление интегралов методом треугольников

Метод прямоугольников.

Вычисление определенных интегралов по формуле Ньютона-Лейбница не всегда возможно. Многие подынтегральные функции не имеют первообразных в виде элементарных функций, поэтому мы во многих случаях не можем найти точное значение определенного интеграла по формуле Ньютона-Лейбница. С другой стороны, точное значение не всегда и нужно. На практике нам часто достаточно знать приближенное значение определенного интеграла с некоторой заданной степенью точности (например, с точностью до одной тысячной). В этих случаях нам на помощь приходят методы численного интегрирования, такие как метод прямоугольников, метод трапеций, метод Симпсона (парабол) и т.п.

В этой статье подробно разберем метод прямоугольников для приближенного вычисления определенного интеграла.

Сначала остановимся на сути этого метода численного интегрирования, выведем формулу прямоугольников и получим формулу для оценки абсолютной погрешности метода. Далее по такой же схеме рассмотрим модификации метода прямоугольников, такие как метод правых прямоугольников и метод левых прямоугольников. В заключении рассмотрим подробное решение характерных примеров и задач с необходимыми пояснениями.

Навигация по странице.

Видео:Метод прямоугольников для нахождения определенного интегралаСкачать

Метод прямоугольников для нахождения определенного интеграла

Суть метода прямоугольников.

Пусть функция y = f(x) непрерывна на отрезке [a; b] . Нам требуется вычислить определенный интеграл Вычисление интегралов методом треугольников.

Обратимся к понятию определенного интеграла. Разобьем отрезок [a;b] на n частей Вычисление интегралов методом треугольниковточками Вычисление интегралов методом треугольников. Внутри каждого отрезка Вычисление интегралов методом треугольниковвыберем точку Вычисление интегралов методом треугольников. Так как по определению определенный интеграл есть предел интегральных сумм при бесконечном уменьшении длины элементарного отрезка разбиения Вычисление интегралов методом треугольников, то любая из интегральных сумм является приближенным значением интеграла Вычисление интегралов методом треугольников.

Суть метода прямоугольников заключается в том, что в качестве приближенного значения определенного интеграла берут интегральную сумму (далее мы покажем, какую именно интегральную сумму берут в методе прямоугольников).

Видео:Метод левых, правых и средних прямоугольниковСкачать

Метод левых, правых и  средних прямоугольников

Метод средних прямоугольников.

Формула метода средних прямоугольников.

Если отрезок интегрирования [a;b] разбить на РАВНЫЕ части длины h точками Вычисление интегралов методом треугольников(то есть Вычисление интегралов методом треугольников) и в качестве точек Вычисление интегралов методом треугольниковвыбрать СЕРЕДИНЫ элементарных отрезков Вычисление интегралов методом треугольников(то есть Вычисление интегралов методом треугольников), то приближенное равенство Вычисление интегралов методом треугольниковможно записать в виде Вычисление интегралов методом треугольников. Это и есть формула метода прямоугольников. Ее еще называют формулой средних прямоугольников из-за способа выбора точек Вычисление интегралов методом треугольников.

Вычисление интегралов методом треугольниковназывают шагом разбиения отрезка [a;b] .

Приведем графическую иллюстрацию метода средних прямоугольников.

Вычисление интегралов методом треугольников

Из чертежа видно, что подынтегральная функция y=f(x) приближается кусочной ступенчатой функцией Вычисление интегралов методом треугольниковна отрезке интегрирования.

С геометрической точки зрения для неотрицательной функции y=f(x) на отрезке [a;b] точное значение определенного интеграла представляет собой площадь криволинейной трапеции, а приближенное значение по методу прямоугольников – площадь ступенчатой фигуры.

Вычисление интегралов методом треугольников

Оценка абсолютной погрешности метода средних прямоугольников.

Перейдем к оценке абсолютной погрешности метода прямоугольников. Сначала оценим погрешность на элементарном интервале. Погрешность метода прямоугольников в целом будет равна сумме абсолютных погрешностей на каждом элементарном интервале.

На каждом отрезке Вычисление интегралов методом треугольниковимеем приближенное равенство Вычисление интегралов методом треугольников. Абсолютную погрешность метода прямоугольников Вычисление интегралов методом треугольниковна i -ом отрезке вычисляем как разность между точным и приближенным значением определенного интеграла: Вычисление интегралов методом треугольников. Так как Вычисление интегралов методом треугольниковесть некоторое число и Вычисление интегралов методом треугольников, то выражение Вычисление интегралов методом треугольниковв силу четвертого свойства определенного интеграла можно записать как Вычисление интегралов методом треугольников. Тогда абсолютная погрешность формулы прямоугольников на i -ом элементарном отрезке будет иметь следующий вид
Вычисление интегралов методом треугольников

Если считать, что функция y = f(x) имеет в точке Вычисление интегралов методом треугольникови некоторой ее окрестности производные до второго порядка включительно, то функцию y = f(x) можно разложить в ряд Тейлора по степеням Вычисление интегралов методом треугольниковс остаточным членом в форме Лагранжа:
Вычисление интегралов методом треугольников

По свойствам определенного интеграла равенства можно интегрировать почленно:
Вычисление интегралов методом треугольников
где Вычисление интегралов методом треугольников.

Таким образом, Вычисление интегралов методом треугольникови Вычисление интегралов методом треугольников.

Абсолютная погрешность формулы прямоугольников на отрезке [a; b] равна сумме погрешностей на каждом элементарном интервале, поэтому
Вычисление интегралов методом треугольникови Вычисление интегралов методом треугольников.

Полученное неравенство представляет собой оценку абсолютной погрешности метода прямоугольников.

Видео:метод прямоугольниковСкачать

метод прямоугольников

Метод левых прямоугольников и метод правых прямоугольников.

Перейдем к модификациям метода прямоугольников.

Вычисление интегралов методом треугольников— это формула метода левых прямоугольников.

Вычисление интегралов методом треугольников— это формула метода правых прямоугольников.

Вычисление интегралов методом треугольников

Отличие от метода средних прямоугольников заключается в выборе точек Вычисление интегралов методом треугольниковне в середине, а на левой и правой границах элементарных отрезков соответственно.

Абсолютная погрешность методов левых и правых прямоугольников оценивается как Вычисление интегралов методом треугольников.

Видео:Метод трапецийСкачать

Метод трапеций

Примеры применения метода прямоугольников при приближенном вычислении определенных интегралов.

Перейдем к решению примеров, в которых требуется вычислить приближенное значение определенного интеграла методом прямоугольников.

В основном, встречаются два типа задач. В первом случае задается количество интервалов, на которые разбивается отрезок интегрирования. Во втором случае задается допустимая абсолютная погрешность.

Формулировки задач примерно следующие:

  • вычислить приближенно определенный интеграл методом прямоугольников, разбив отрезок интегрирования на n частей;
  • Методом прямоугольников найти приближенное значение определенного интеграла с точностью до одной сотой (одной тысячной и т.п.).

Разберем каждый случай.

Сразу оговоримся, что в примерах подынтегральные функции будем брать такие, чтобы можно было найти их первообразные. В этом случае мы сможем вычислить точное значение определенного интеграла и сравнить его с приближенным значением, полученным по методу прямоугольников.

Вычислить определенный интеграл Вычисление интегралов методом треугольниковметодом прямоугольников, разбив отрезок интегрирования на 10 частей.

В нашем примере a = 4, b = 9, n = 10 , Вычисление интегралов методом треугольников.

Внимательно посмотрим на формулу прямоугольников Вычисление интегралов методом треугольников.

Чтобы ее применить, нам нужно вычислить шаг h и значения функции Вычисление интегралов методом треугольниковв точках Вычисление интегралов методом треугольников.

Вычислим шаг: Вычисление интегралов методом треугольников.

Так как Вычисление интегралов методом треугольников, то Вычисление интегралов методом треугольников.

Для i = 1 имеем Вычисление интегралов методом треугольников. Находим соответствующее значение функции Вычисление интегралов методом треугольников.

Для i = 2 имеем Вычисление интегралов методом треугольников. Находим соответствующее значение функции Вычисление интегралов методом треугольников.

И так продолжаем вычисления до i = 10 .

Для удобства представим результаты в виде таблицы.
Вычисление интегралов методом треугольников

Подставляем полученные значения в формулу прямоугольников:
Вычисление интегралов методом треугольников

Значение исходного определенного интеграла можно вычислить по формуле Ньютона-Лейбница:
Вычисление интегралов методом треугольников.

Первообразная Вычисление интегралов методом треугольниковподынтегральной функции Вычисление интегралов методом треугольниковбыла найдена интегрированием по частям.

Как видите, точное значение определенного интеграла отличается от значения, полученного по методу прямоугольников для n = 10 , менее чем на шесть сотых долей единицы.

Вычисление интегралов методом треугольников

Вычислите приближенное значение определенного интеграла Вычисление интегралов методом треугольниковметодами левых и правых прямоугольников с точностью до одной сотой.

По условию имеем a = 1, b = 2 , Вычисление интегралов методом треугольников.

Чтобы применить формулы правых и левых прямоугольников нам необходимо знать шаг h , а чтобы вычислить шаг h необходимо знать на какое число отрезков n разбивать отрезок интегрирования. Так как в условии задачи нам указана точность вычисления 0.01 , то число n мы можем найти из оценки абсолютной погрешности методов левых и правых прямоугольников.

Нам известно, что Вычисление интегралов методом треугольников. Следовательно, если найти n , для которого будет выполняться неравенство Вычисление интегралов методом треугольников, то будет достигнута требуемая степень точности.

Найдем Вычисление интегралов методом треугольников— наибольшее значение модуля первой производной подынтегральной функции Вычисление интегралов методом треугольниковна отрезке [1; 2] . В нашем примере это сделать достаточно просто.
Вычисление интегралов методом треугольников

Графиком функции производной подынтегральной функции является парабола, ветви которой направлены вниз, на отрезке [1; 2] ее график монотонно убывает. Поэтому достаточно вычислить модули значения производной на концах отрезка и выбрать наибольшее:
Вычисление интегралов методом треугольников

В примерах со сложными подынтегральными функциями Вам может потребоваться теория раздела наибольшее и наименьшее значение функции.

Таким образом:
Вычисление интегралов методом треугольников

Число n не может быть дробным (так как n – натуральное число – количество отрезков разбиения интервала интегрирования). Поэтому, для достижения точности 0.01 по методу правых или левых прямоугольников, мы можем брать любое n = 9, 10, 11, … Для удобства расчетов возьмем n = 10 .

Формула левых прямоугольников имеет вид Вычисление интегралов методом треугольников, а правых прямоугольников Вычисление интегралов методом треугольников. Для их применения нам требуется найти h и Вычисление интегралов методом треугольниковдля n = 10 .

Итак, Вычисление интегралов методом треугольников

Точки разбиения отрезка [a; b] определяются как Вычисление интегралов методом треугольников.

Для i = 0 имеем Вычисление интегралов методом треугольникови Вычисление интегралов методом треугольников.

Для i = 1 имеем Вычисление интегралов методом треугольникови Вычисление интегралов методом треугольников.

И так далее до i = 10 .

Полученные результаты удобно представлять в виде таблицы:
Вычисление интегралов методом треугольников

Подставляем в формулу левых прямоугольников:
Вычисление интегралов методом треугольников

Подставляем в формулу правых прямоугольников:
Вычисление интегралов методом треугольников

Вычислим точное значение определенного интеграла по формуле Ньютона-Лейбница:
Вычисление интегралов методом треугольников

Очевидно, точность в одну сотую соблюдена.

Вычисление интегралов методом треугольников

Во многих случаях нахождение наибольшего значения модуля первой производной (или второй производной для метода средних прямоугольников) подынтегральной функции на отрезке интегрирования является очень трудоемкой процедурой.

Поэтому можно действовать без использования неравенства для оценки абсолютной погрешности методов численного интегрирования. Хотя оценки предпочтительнее.

Для методов правых и левых прямоугольников можно использовать следующую схему.

Берем произвольное n (например, n = 5 ) и вычисляем приближенное значение интеграла. Далее удваиваем количество отрезков разбиения интервала интегрирования, то есть, берем n = 10 , и вновь вычисляем приближенное значение определенного интеграла. Находим разность полученных приближенных значений для n = 5 и n = 10 . Если абсолютная величина этой разности не превышает требуемой точности, то в качестве приближенного значения определенного интеграла берем значение при n = 10 , предварительно округлив его до порядка точности. Если же абсолютная величина разности превышает требуемую точность, то вновь удваиваем n и сравниваем приближенные значения интегралов для n = 10 и n = 20 . И так продолжаем до достижения требуемой точности.

Для метода средних прямоугольников действуем аналогично, но на каждом шаге вычисляем треть модуля разности полученных приближенных значений интеграла для n и 2n . Этот способ называют правилом Рунге.

Вычислим определенный интеграл из предыдущего примера с точностью до одной тысячной по методу левых прямоугольников.

Не будем подробно останавливаться на вычислениях.

Для n = 5 имеем Вычисление интегралов методом треугольников, для n = 10 имеем Вычисление интегралов методом треугольников.

Так как Вычисление интегралов методом треугольников, тогда берем n = 20 . В этом случае Вычисление интегралов методом треугольников.

Так как Вычисление интегралов методом треугольников, тогда берем n = 40 . В этом случае Вычисление интегралов методом треугольников.

Так как Вычисление интегралов методом треугольников, то, округлив 0.01686093 до тысячных, утверждаем, что значение определенного интеграла Вычисление интегралов методом треугольниковравно 0.017 с абсолютной погрешностью 0.001 .

В заключении остановимся на погрешности методов левых, правых и средних прямоугольников более детально.

Из оценок абсолютных погрешностей видно, что метод средних прямоугольников даст большую точность, чем методы левых и правых прямоугольников для заданного n . В то же время, объем вычислений одинаков, так что использование метода средних прямоугольников предпочтительнее.

Если говорить о непрерывных подынтегральных функциях, то при бесконечном увеличении числа точек разбиения отрезка интегрирования приближенное значение определенного интеграла теоретически стремиться к точному. Использование методов численного интегрирования подразумевает использование вычислительной техники. Поэтому следует иметь в виду, что при больших n начинает накапливаться вычислительная погрешность.

Еще заметим, если Вам требуется вычислить определенный интеграл с некоторой точностью, то промежуточные вычисления проводите с более высокой точностью. Например, Вам требуется вычислить определенный интеграл с точностью до одной сотой, тогда промежуточные вычисления проводите с точностью как минимум до 0.0001 .

При вычислении определенного интеграла методом прямоугольников (методом средних прямоугольников) пользуемся формулой Вычисление интегралов методом треугольникови оцениваем абсолютную погрешность как Вычисление интегралов методом треугольников.

Для метода левых и правых прямоугольников пользуемся формулами Вычисление интегралов методом треугольникови Вычисление интегралов методом треугольниковсоответственно. Абсолютную погрешность оцениваем как Вычисление интегралов методом треугольников.

Видео:Определенный интеграл метод замены переменной (доказательство, пример)Скачать

Определенный интеграл метод замены переменной (доказательство, пример)

Метод прямоугольников

Не всегда имеется возможность вычисления интегралов по формуле Ньютона-Лейбница. Не все подынтегральные функции имеют первообразные элементарных функций, поэтому нахождение точного числа становится нереальным. При решении таких задач не всегда необходимо получать на выходе точные ответы. Существует понятие приближенного значения интеграла, которое задается методом числового интегрирования типа метода прямоугольников, трапеций, Симпсона и другие.

Данная статья посвящена именно этому разделу с получением приближенных значений.

Будет определена суть метода Симпсона, получим формулу прямоугольников и оценки абсолютной погрешности, метод правых и левых треугольников. На заключительном этапе закрепим знания при помощи решения задач с подробным объяснением.

Видео:12й класс; Информатика; "Вычисление определённого интеграла методом прямоугольников"Скачать

12й класс; Информатика; "Вычисление определённого интеграла методом прямоугольников"

Суть метода прямоугольников

Если функция y = f ( x ) имеет непрерывность на отрезке [ a ; b ] и необходимо вычислить значение интеграла ∫ a b f ( x ) d x .

Необходимо воспользоваться понятием неопределенного интеграла. Тогда следует разбить отрезок [ a ; b ] на количество n частей x i — 1 ; x i , i = 1 , 2 , . . . . , n , где a = x 0 x 1 x 2 . . . x n — 1 x n = b . В промежутке отрезка x i — 1 ; x i , i = 1 , 2 , . . . , n выберем точку со значением ζ i . Из определения имеем, что существует определенный тип интегральных сумм при бесконечном уменьшении длины элементарного отрезка, который уже разбили. Это выражается формулой λ = m a x i = 1 , 2 , . . . , n ( x i — x i — 1 ) → 0 , тогда получаем, что любая из таких интегральных сумм – приближенное значение интеграла ∫ a b f ( x ) d x ≈ ∑ i = 1 n f ( ζ i ) · ( x i — x i — 1 ) .

Суть метода прямоугольников выражается в том, что приближенное значение считается интегральной суммой.

Видео:Численное интегрирование: Методы Левых Правых прямоугольников, Трапеций, Симпсона c++Скачать

Численное интегрирование: Методы Левых Правых прямоугольников, Трапеций, Симпсона c++

Метод средних прямоугольников

Если разбить интегрируемый отрезок [ a ; b ] на одинаковые части точкой h , то получим a = x 0 , x 1 = x 0 + h , x 2 = x 0 + 2 h , . . . , x — 1 = x 0 + ( n — 1 ) h , x n = x 0 + n h = b , то есть h = x i — x i — 1 = b — a n , i = 1 , 2 , . . . , n . Серединами точек ζ i выбираются элементарные отрезки x i — 1 ; x i , i = 1 , 2 , . . . , n , значит ζ i = x i — 1 + h 2 , i = 1 , 2 , . . . , n .

Тогда приближенное значение ∫ a b f ( x ) d x ≈ ∑ i = 1 n f ( ζ i ) · ( x i — x i — 1 ) записывается таким образом ∫ a b f ( x ) d x ≈ h · ∑ i = 1 n f ( ζ i ) x i — 1 + h 2 . Данная формула называется формулой метода прямоугольников.

Такое название метод получает из-за характера выбора точек ζ i , где шаг разбиения отрезка берется за h = b — a n .

Рассмотрим на приведенном ниже рисунке данный метод.

Вычисление интегралов методом треугольников

Чертеж явно показывает, что приближение к кусочной ступенчатой функции

y = f x 0 + h 2 , x ∈ [ x 0 ; x 1 ) f x 1 + h 2 , x ∈ [ x 1 ; x 2 ) . . . f x n — 1 + h 2 , x ∈ [ x n — 1 ; x n ] происходит на всем пределе интегрирования.

С геометрической стороны мы имеем, что неотрицательная функция y = f ( x ) на имеющемся отрезке [ a ; b ] имеет точное значение определенного интеграла и выглядит как криволинейная трапеция, площадь которой необходимо найти. Рассмотрим на рисунке, приведенном ниже.

Вычисление интегралов методом треугольников

Видео:Метод трапеций при вычислении определенного интегралаСкачать

Метод трапеций при вычислении определенного интеграла

Оценка абсолютной погрешности метода средних прямоугольников

Для оценки абсолютной погрешности необходимо выполнить ее оценку на заданном интервале. То есть следует найти сумму абсолютных погрешностей каждого интервала. Каждый отрезок x i — 1 ; x i , i = 1 , 2 , . . . , n имеет приближенное равенство ∫ x i — 1 x i f ( x ) d x ≈ f x i — 1 + h 2 · h = f x i — 1 + h 2 · ( x i — x i — 1 ) . Абсолютная погрешность данного метода треугольников δ i , принадлежащей отрезку i , вычисляется как разность точного и приближенного определения интеграла . Имеем, что δ i = ∫ x i — 1 x i f ( x ) d x — f x i — 1 + h 2 · x i — x i — 1 . Получаем, что f x i — 1 + h 2 является некоторым числом, а x i — x i — 1 = ∫ x i — 1 x i d x , тогда выражение f x i — 1 + h 2 · x i — x i — 1 по 4 свойству определения интегралов записывается в форме f x i — 1 + h 2 · x i — x i — 1 = ∫ x — 1 x f x i — 1 + h 2 d x . Отсюда получаем, что отрезок i имеет абсолютную погрешность вида

δ i = ∫ x i — 1 x i f ( x ) d x — f x i — 1 + h 2 · x i — x i — 1 = = ∫ x i — 1 x i f ( x ) d x — ∫ x i — 1 x i x i — 1 + h 2 d x = ∫ x i — 1 x i f ( x ) = — f x i — 1 + h 2 d x

Если взять, что функция y = f ( x ) имеет производные второго порядка в точке x i — 1 + h 2 и ее окрестностях, тогда y = f ( x ) раскладывается в ряд Тейлора по степеням x — x i — 1 + h 2 с остаточным членом в форме разложения по Лагранжу. Получаем, что

f ( x ) = f x i — 1 + h 2 + f ‘ x i — 1 + h 2 · x — x i — 1 + h 2 + + f » ( ε i ) x — x i — 1 + h 2 2 2 ⇔ ⇔ f ( x ) = f ( x i — 1 + h 2 ) = f ‘ x i — 1 + h 2 · x — x i — 1 + h 2 + + f » ( ε i ) x — x i — 1 + h 2 2 2

Исходя из свойства определенного интеграла, равенство может интегрироваться почленно. Тогда получим, что

∫ x i — 1 x i f ( x ) — f x i — 1 + h 2 d x = ∫ x i — 1 x i f ‘ x i — 1 + h 2 · x — x i — 1 + h 2 d x + + ∫ x i — 1 x i f » ε i · x — x i — 1 + h 2 2 2 d x = = f ‘ x i — 1 + h 2 · x — x i — 1 + h 2 2 2 x i — 1 x i + f » ε i · x — x i — 1 + h 2 3 6 x i — 1 x i = = f ‘ x i — 1 + h 2 · x i — h 2 2 2 — x i — 1 — x i — 1 + h 2 2 2 + + f » ε i · x i — h 2 3 6 — x i — 1 — x i — 1 + h 2 3 6 = = f ‘ x i — 1 + h 2 · h 2 8 — h 2 8 + f » ( ε i ) · h 3 48 + h 3 48 = f » ε i · h 3 24

где имеем ε i ∈ x i — 1 ; x i .

Отсюда получаем, что δ i = ∫ x i — 1 x i f ( x ) — f x i — 1 + h 2 d x = f » ε i · h 3 24 .

Абсолютная погрешность формулы прямоугольников отрезка [ a ; b ] равняется сумме погрешностей каждого элементарного интервала. Имеем, что

δ n = ∑ i = 1 n ∫ x i — 1 x i f ( x ) — f x i — 1 + h 2 d x и δ n ≤ m a x x ∈ [ a ; b ] f » ( x ) · n · h 3 24 = m a x x ∈ [ a ; b ] f » ( x ) = b — a 3 24 n 2 .

Неравенство является оценкой абсолютной погрешности метода прямоугольников.

Видео:3. Численные методы расчета определенного интеграла: прямоугольников, трапеции, парабол (Симпсона)Скачать

3. Численные методы расчета определенного интеграла: прямоугольников, трапеции, парабол (Симпсона)

Метод левых прямоугольников и метод правых прямоугольников

Для модификации метода рассмотрим формулы.

∫ a b f ( x ) d x ≈ h · ∑ i = 0 n — 1 f ( x i ) является формулой левых треугольников.

∫ a b f ( x ) d x ≈ h · ∑ i = 1 n f ( x i ) является формулой правых треугольников.

Рассмотрим на примере рисунка, приведенного ниже.

Вычисление интегралов методом треугольников

Отличием метода средних прямоугольников считается выбор точек не по центру, а на левой и правой границах данных элементарных отрезков.

Такая абсолютная погрешность методов левых и правых треугольников можно записать в виде

δ n ≤ m a x x ∈ [ a ; b ] f ‘ ( x ) · h 2 · n 2 = m a x x ∈ [ a ; b ] f ‘ ( x ) · ( b — a ) 2 2 n

Видео:Лекция 1. Точка на прямой. Метод прямоугольного треугольникаСкачать

Лекция 1. Точка на прямой. Метод прямоугольного треугольника

Примеры применения метода прямоугольников при приближенном вычислении определенных интегралов

Необходимо рассмотреть решение примеров, где нужно вычислять примерное значение имеющегося определенного интеграла при помощи метода прямоугольников. Рассматривают два типа решения заданий. Суть первого случая – задание количества интервалов для разбивания отрезка интегрирования. Суть второго заключается в наличии допустимой абсолютной погрешности.

Формулировки задач выглядят следующим образом:

  • произвести приближенное вычисление определенного интеграла при помощи метода прямоугольников, разбивая на nколичество отрезков интегрирования;
  • найти приближенное значение определенного интеграла методом прямоугольников с точностью до одной сотой.

Рассмотрим решения в обоих случаях.

В качестве примера выбрали задания, которые поддаются преобразованию для нахождения их первообразных. Тогда появляется возможность вычисления точного значения определенного интеграла и сравнения с приближенным значением при помощи метода прямоугольников.

Произвести вычисление определенного интеграла ∫ 4 9 x 2 sin x 10 d x при помощи метода прямоугольников, разбивая отрезок интегрирования на 10 частей.

Из условия имеем, что a = 4 , b = 9 , n = 10 , f ( x ) = x 2 sin x 10 . Для применения ∫ a b f ( x ) d x ≈ h · ∑ i = 1 n f x i — 1 + h 2 необходимо вычислить размерность шага h и значение функции f ( x ) = x 2 sin x 10 в точках x i — 1 + h 2 , i = 1 , 2 , . . . , 10 .

Вычисляем значение шага и получаем, что

h = b — a n = 9 — 4 10 = 0 . 5 .

Потому как x i — 1 = a + ( i — 1 ) · h , i = 1 , . . . , 10 , тогда x i — 1 + h 2 = a + ( i — 1 ) · h + h 2 = a + i — 0 . 5 · h , i = 1 , . . . , 10 .

Так как i = 1 , то получаем x i — 1 + h 2 = x 0 + h 2 = a + ( i — 0 . 5 ) · h = 4 + ( 1 — 0 . 5 ) · 0 . 5 = 4 . 25 .

После чего необходимо найти значение функции

f x i — 1 + h 2 = f x 0 + h 2 = f ( 4 . 25 ) = 4 . 25 2 sin ( 4 . 25 ) 10 ≈ — 1 . 616574

При i = 2 получаем x i — 1 + h 2 = x 1 + h 2 = a + i — 0 . 5 · h = 4 + ( 2 — 0 . 5 ) · 0 . 5 = 4 . 75 .

Нахождение соответствующего значения функции получает вид

f x i — 1 + h 2 = f x 1 + h 2 = f ( 4 . 75 ) = 4 . 75 2 sin ( 4 . 75 ) 10 ≈ — 2 . 254654

Вычисления производятся до i = 10 .

Представим эти данные в таблице, приведенной ниже.

i12345
x i — 1 + h 24 . 254 . 755 . 255 . 756 . 25
f x i — 1 + h 2— 1 . 616574— 2 . 254654— 2 . 367438— 1 . 680497— 0 . 129606
i678910
x i — 1 + h 26 . 757 . 257 . 758 . 258 . 75
f x i — 1 + h 22 . 0505134 . 3263185 . 9738086 . 2794744 . 783042

Значения функции необходимо подставить в формулу прямоугольников. Тогда получаем, что

∫ 4 9 x 2 sin x 10 d x ≈ h · ∑ i = 1 n f x i — 1 + h 2 = = 0 . 5 · — 1 . 616574 — 2 . 25654 — 2 . 367438 — 1 . 680497 — 0 . 129606 + + 2 . 050513 + 4 . 326318 + 5 . 973808 + 6 . 279474 + 4 . 783042 = = 7 . 682193

Исходный интеграл можно вычислить при помощи формулы Ньютона-Лейбница. Получаем, что

∫ 4 9 x 2 · sin x 10 d x = — 1 10 x 2 · cos x + 1 5 x · sin x + 1 5 cos x 4 9 = = 7 5 cos 4 — 4 5 sin 4 — 79 10 cos 9 + 9 5 sin 9 ≈ 7 . 630083

Находим первообразную выражения — 1 10 x 2 · cos x + 1 5 x · sin x + 1 5 cos x соответствующую функции f ( x ) = x 2 sin x 10 . Нахождение производится методом интегрирования по частям.

Отсюда видно, что определенный интеграл отличается от значения, полученном при решении методом прямоугольников, где n = 10 , на 6 долей единицы. Рассмотрим на рисунке, приведенном ниже.

Вычисление интегралов методом треугольников

Вычислить приближенного значение определенного интеграла ∫ 1 2 ( — 0 . 03 x 3 + 0 . 26 x — 0 . 26 ) d x при помощи метода левых и правых прямоугольников с точностью до одной сотой.

Из условия мы имеем, что a = 1 , b = 2 и f ( x ) = — 0 . 03 x 3 + 0 . 26 x — 0 . 26 .

Для применения формулы правых и левых прямоугольников нужно знать размерность шага h , а для его вычисления разбиваем отрезок интегрирования на n отрезков. По условию имеем, что точность должна быть до 0 , 01 , тогда нахождение n возможно при помощи оценки абсолютной погрешности методов левых и правых прямоугольников.

Известно, что δ n ≤ m a x x ∈ [ a ; b ] f ‘ ( x ) · ( b — a ) 2 2 n . Для достижения необходимой степени точности необходимо найти такое значение n , для которого неравенство m a x x ∈ [ a ; b ] f ‘ ( x ) · ( b — a ) 2 2 n ≤ 0 . 01 будет выполнено.

Найдем наибольшее значение модуля первой производной, то есть значение m a x x ∈ [ a ; b ] f ‘ ( x ) подынтегральной функции f ( x ) = — 0 . 03 x 3 + 0 . 26 x — 0 . 26 , определенной на отрезке [ 1 ; 2 ] . В нашем случае необходимо выполнить вычисления:

f ‘ ( x ) = — 0 . 03 x 3 + 0 . 26 x — 0 . 26 ‘ = — 0 . 09 x 2 + 0 . 26

Парабола является графиком подынтегральной функции с ветвями, направленными вниз, определенная на отрезке [ 1 ; 2 ] , причем с монотонно убывающим графиком. Необходимо произвести вычисление модулей значений производных на концах отрезков, а из них выбрать наибольшее значение. Получаем, что

f ‘ ( 1 ) = — 0 . 09 · 1 2 + 0 . 26 = 0 . 17 f ‘ ( 2 ) = — 0 . 09 · 2 2 + 0 . 26 = 0 . 1 → m a x x ∈ [ 1 ; 2 ] f ‘ ( x ) = 0 . 17

Решение сложных подынтегральных функций подразумевает обращение к разделу наибольше и наименьшее значение функции.

Тогда получаем, что наибольшее значение функции имеет вид:

m a x x ∈ [ a ; b ] f ‘ ( x ) · ( b — a ) 2 2 n ≤ 0 . 01 ⇔ ⇔ 0 . 17 · ( 2 — 1 ) 2 2 n ≤ 0 . 01 ⇔ 0 . 085 n ≤ 0 . 01 ⇔ n ≥ 8 . 5

Дробность числа n исключается, так как n является натуральным числом. Чтобы прийти к точности 0 . 01 , используя метод правых и левых прямоугольников, не обходимо выбирать любое значение n . Для четкости расчетов возьмем n = 10 .

Тогда формула левых прямоугольников примет вид ∫ a b f ( x ) d x ≈ h · ∑ i = 0 n — 1 f ( x i ) , а правых — ∫ a b f ( x ) d x ≈ h · ∑ i = 1 n f ( x i ) . Для применения их на практике необходимо найти значение размерности шага h и f ( x i ) , i = 0 , 1 , . . . , n , где n = 10 .

h = b — a n = 2 — 1 10 = 0 . 1

Определение точек отрезка [ a ; b ] производится с помощью x i = a + i · h , i = 0 , 1 , . . . , n .

При i = 0 , получаем x i = x 0 = a + i · h = 1 + 0 · 0 . 1 = 1 и f ( x i ) = f ( x 0 ) = f ( 1 ) = — 0 . 03 · 1 3 + 0 . 26 · 1 — 0 . 26 = — 0 . 03 .

При i = 1 , получаем x i = x 1 = a + i · h = 1 + 1 · 0 . 1 = 1 . 1 и f ( x i ) = f ( x 1 ) = f ( 1 . 1 ) = — 0 . 03 · ( 1 . 1 ) 3 + 0 . 26 · ( 1 . 1 ) — 0 . 26 = — 0 . 01393 .

Вычисления производятся до i = 10 .

Вычисления необходимо представить в таблице, приведенной ниже.

i012345
x i11 . 11 . 21 . 31 . 41 . 5
f ( x i )— 0 . 03— 0 . 013930 . 000160 . 012090 . 021680 . 02875
i678910
x i1 . 61 . 71 . 81 . 92
f ( x i )0 . 033120 . 034610 . 033040 . 028230 . 02

Подставим формулу левых треугольников

∫ 1 2 ( — 0 . 03 x 3 + 0 . 26 x — 0 . 26 ) d x ≈ h · ∑ i = 0 n — 1 f ( x i ) = = 0 . 1 · — 0 . 03 — 0 . 01393 + 0 . 00016 + 0 . 01209 + 0 . 02168 + + 0 . 02875 + 0 . 03312 + 0 . 03461 + 0 . 03304 + 0 . 02823 = = 0 . 014775

Подставляем в формулу правых треугольников

∫ 1 2 ( — 0 . 03 x 3 + 0 . 26 x — 0 . 26 ) d x ≈ h · ∑ i = 1 n f ( x i ) = = 0 . 1 · — 0 . 01393 + 0 . 00016 + 0 . 01209 + 0 . 02168 + 0 . 02875 + + 0 . 03312 + 0 . 03461 + 0 . 03304 + 0 . 02823 + 0 . 02 = 0 . 019775

Произведем вычисление по формуле Ньютона-Лейбница:

∫ 1 2 ( — 0 . 03 x 3 + 0 . 26 x — 0 . 26 ) d x = = — 0 . 03 x 4 4 + 0 . 13 x 2 — 0 . 26 x 1 2 = 0 . 0175

Рассмотрим рисунок, приведенный ниже.

Вычисление интегралов методом треугольников

Видео:Самый короткий тест на интеллект Задача Массачусетского профессораСкачать

Самый короткий тест на интеллект Задача Массачусетского профессора

Замечание

Нахождение наибольшего значения модуля первой производной является трудоемкой работой, поэтому можно исключить использование неравенства для оценивания абсолютной погрешности и методов численного интегрирования. Разрешено применять схему.

Берем значение n = 5 для вычисления приближенного значения интеграла. Необходимо удвоить количество отрезков интегрирования, тогда n = 10 , после чего производится вычисление примерного значения. необходимо найти разность этих значений при n = 5 и n = 10 . Когда разность не соответствует требуемой точности, то приближенным значением считается n = 10 с округлением до десятка.

Когда погрешность превышает необходимую точность, то производится удваивание n и сравнивание приближенных значений. Вычисления производятся до тех пор, пока необходимая точность не будет достигнута.

Для средних прямоугольников выполняются аналогичные действия, но вычисления на каждом шаге требуют разности полученных приближенных значений интеграла для n и 2 n . Такой способ вычисления называется правилом Рунге.

Произведем вычисление интегралов с точностью до одной тысячной при помощи метода левых прямоугольников.

При n = 5 получаем, что ∫ 1 2 ( — 0 . 03 x 3 + 0 . 26 x — 0 . 26 ) d x ≈ 0 . 0116 , а при n = 10 — ∫ 1 2 ( — 0 . 03 x 3 + 0 . 26 x — 0 . 26 ) d x ≈ 0 . 014775 . Так как имеем, что 0 . 0116 — 0 . 014775 = 0 . 003175 > 0 . 001 , возьмем n = 20 . Получаем, что ∫ 1 2 ( — 0 . 03 x 3 + 0 . 26 x — 0 . 26 ) d x ≈ 0 . 01619375 . Имеем 0 . 014775 — 0 . 01619375 = 0 . 00141875 > 0 . 001 , возьмем значение n = 40 , тогда получим ∫ 1 2 ( — 0 . 03 x 3 + 0 . 26 x — 0 . 26 ) d x ≈ 0 . 01686093 . Имеем, что 0 . 1619375 — 0 . 01686093 = 0 . 00066718 0 . 001 , тогда после округления значения проверим, что ∫ 1 2 ( — 0 . 03 x 3 + 0 . 26 x — 0 . 26 ) d x равняется значению 0 , 017 с погрешностью 0 , 001 . Из оценок абсолютных погрешностей видно, что данный метод дает максимальную точность в отличие от метода левых и правых координат для заданного n . Отдается предпочтение методу средних прямоугольников.

Непрерывные подынтегральные функции при бесконечном разделении на отрезки данное приближенно число стремится к точному. Чаще всего такой метод выполняется при помощи специальных программ на компьютере. Поэтому чем больше значение n , тем больше вычислительная погрешность.

Для наиболее точного вычисления необходимо выполнять точные промежуточные действия, желательно с точностью до 0 , 0001 .

Видео:Как работает метод наименьших квадратов? Душкин объяснитСкачать

Как работает метод наименьших квадратов? Душкин объяснит

Итоги

Для вычисления неопределенного интеграла методом прямоугольников следует применять формулу такого вида ∫ a b f ( x ) d x ≈ h · ∑ i = 1 n f ( ζ i ) x i — 1 + h 2 и оценивается абсолютная погрешность с помощью δ n ≤ m a x x ∈ [ a ; b ] f ‘ ‘ ( x ) · n · h 3 24 = m a x x ∈ [ a ; b ] f ‘ ‘ ( x ) · b — a 3 24 n 2 .

Для решения с помощью методов правых и левых прямоугольников применяют формулы, имеющие вид, ∫ a b f ( x ) d x ≈ h · ∑ i = 0 n — 1 f ( x i ) и ∫ a b f ( x ) d x ≈ h · ∑ i = 1 n f ( x i ) . Абсолютная погрешность оценивается при помощи формулы вида δ n ≤ m a x x ∈ [ a ; b ] f ‘ ( x ) · h 2 · n 2 = m a x x ∈ [ a ; b ] f ‘ ( x ) · b — a 2 2 n .

Видео:Метод средних прямоугольниковСкачать

Метод средних прямоугольников

Вычисление интегралов по формулам прямоугольников и трапеций. Оценка погрешности

  • Дидактическая цель. Познакомить учащихся с методами приближённого вычисления определённого интеграла.
  • Воспитательная цель. Тема данного занятия имеет большое практическое и воспитательное значение. Наиболее просто к идее численного интегрирования можно подойти, опираясь на определение определённого интеграла как предела интегральных сумм. Например, если взять какое-либо достаточно мелкое разбиение отрезка [a; b] и построить для него интегральную сумму, то её значение можно приближённо принять за значение соответствующего интеграла. При этом важно быстро и правильно производить вычисления с привлечением вычислительной техники.

Основные знания и умения. Иметь понятие о приближённых методах вычисления определённого интеграла по формулам прямоугольников и трапеций.

  • Раздаточный материал. Карточки-задания для самостоятельной работы.
  • ТСО. Мультипроектор, ПК, ноутбуки.
  • Оснащение ТСО. Презентации: “Геометрический смысл производной”, “Метод прямоугольников”, “Метод трапеций”. (Презентации можно взять у автора).
  • Вычислительные средства: ПК, микрокалькуляторы.
  • Методические рекомендации

Вид занятия. Интегрированное практическое.

Мотивация познавательной деятельности учащихся. Очень часто приходится вычислять определённые интегралы, для которых невозможно найти первообразную. В этом случае применяют приближённые методы вычисления определённых интегралов. Иногда приближённый метод применяют и для “берущихся” интегралов, если вычисление по формуле Ньютона-Лейбница не рационально. Идея приближённого вычисления интеграла заключается в том, что кривая Вычисление интегралов методом треугольниковзаменяется новой, достаточно “близкой” к ней кривой. В зависимости от выбора новой кривой можно использовать ту или иную приближённую формулу интегрирования.

  1. Формула прямоугольников.
  2. Формула трапеций.
  3. Решение упражнений.
  1. Повторение опорных знаний учащихся.

Повторить с учащимися: основные формулы интегрирования, сущность изученных методов интегрирования, геометрический смысл определённого интеграла.

Решение многих технических задач сводится к вычислению определённых интегралов, точное выражение которых сложно, требует длительных вычислений и не всегда оправдано практически. Здесь бывает вполне достаточно их приближённого значения.

Пусть, например, необходимо вычислить площадь, ограниченную линией, уравнение которой неизвестно. В этом случае можно заменить данную линию более простой, уравнение которой известно. Площадь полученной таким образом криволинейной трапеции принимается за приближённое значение искомого интеграла.

Простейшим приближённым методом является метод прямоугольников. Геометрически идея способа вычисления определённого интеграла по формуле прямоугольников состоит в том, что площадь криволинейной трапеции АВСD заменяется суммой площадей прямоугольников, одна сторона которых равна Вычисление интегралов методом треугольников, а друга — Вычисление интегралов методом треугольников.

Если суммировать площади прямоугольников, которые показывают площадь криволинейной трапеции с недостатком [Рисунок1], то получим формулу:

Вычисление интегралов методом треугольников

Вычисление интегралов методом треугольников

то получим формулу: Вычисление интегралов методом треугольников

Если с избытком

Вычисление интегралов методом треугольников

Вычисление интегралов методом треугольников

то Вычисление интегралов методом треугольников

Значения у0, у1. уn находят из равенств Вычисление интегралов методом треугольников, к = 0, 1. n .Эти формулы называются формулами прямоугольников и дают приближённый результат. С увеличением n результат становится более точным.

Итак, чтобы найти приближённое значение интеграла Вычисление интегралов методом треугольников, нужно:

  • разделить отрезок интегрирования [a, b] на n равных частей точками х0= а, х1, х2. х n -1, х n = b ;
  • вычислить значения подынтегральной функции Вычисление интегралов методом треугольниковв точках деления, т.е. найти у 0 =f (x0), у 1 =f (x1), у 2 =f (x2), у n -1 =f (xn-1), у n =f (xn) ;
  • воспользоваться одной из приближённых формул.

Для того, чтобы найти погрешность вычислений, надо воспользоваться формулами:

Вычисление интегралов методом треугольников
Вычисление интегралов методом треугольников

Пример 1. Вычислить по формуле прямоугольников Вычисление интегралов методом треугольников. Найти абсолютную и относительную погрешности вычислений.

Разобьём отрезок [a, b] на несколько (например, на 6) равных частей. Тогда а = 0, b = 3 , Вычисление интегралов методом треугольников

х k = a + k Вычисление интегралов методом треугольников Вычисление интегралов методом треугольниковх
х
0 = 2 + 0 Вычисление интегралов методом треугольников Вычисление интегралов методом треугольников= 2
х1 = 2 + 1 Вычисление интегралов методом треугольников Вычисление интегралов методом треугольников= 2,5
х2 = 2 + 2 Вычисление интегралов методом треугольников Вычисление интегралов методом треугольников=3
х3 = 2 + 3 Вычисление интегралов методом треугольников Вычисление интегралов методом треугольников= 3
х4 = 2 + 4 Вычисление интегралов методом треугольников Вычисление интегралов методом треугольников= 4
х5 = 2 + 5 Вычисление интегралов методом треугольников Вычисление интегралов методом треугольников= 4,5

х22,533,544,5
у46,25912,251620,25

Вычисление интегралов методом треугольников

Для того, чтобы вычислить относительную погрешность вычислений, надо найти точное значение интеграла:

Вычисление интегралов методом треугольников
Вычисление интегралов методом треугольников
Вычисление интегралов методом треугольников

Вычисления проходили долго и мы получили довольно-таки грубое округление. Чтобы вычислить этот интеграл с меньшим приближением, можно воспользоваться техническими возможностями компьютера.

Для нахождения определённого интеграла методом прямоугольников необходимо ввести значения подынтегральной функции f(x) в рабочую таблицу Excel в диапазоне х Вычисление интегралов методом треугольников[2 ;5 ] с заданным шагом Вычисление интегралов методом треугольниковх = 0,1.

  1. Открываем чистый рабочий лист.
  2. Составляем таблицу данных и f(x)). Пусть первый столбец будет значениями х, а второй соответствующими показателями f(x). Для этого в ячейку А1 вводим слово Аргумент, а в ячейку В1 – слово Функция. В ячейку А2 вводится первое значение аргумента – левая граница диапазона (2). В ячейку А3 вводится второе значение аргумента – левая граница диапазона плюс шаг построения (2,1). Затем, выделив блок ячеек А2:А3, автозаполнением получаем все значения аргумента (за правый нижний угол блока протягиваем до ячейки А32, до значения х=5).
  3. Далее вводим значения подынтегральной функции. В ячейку В2 необходимо записать её уравнение. Для этого табличный курсор необходимо установить в ячейку В2 и с клавиатуры ввести формулу =А2^2 (при английской раскладке клавиатуры). Нажимаем клавишу Enter. В ячейке В2 появляется 4. Теперь необходимо скопировать функцию из ячейки В2. Автозаполнением копируем эту формулу в диапазон В2:В32.
    В результате должна быть получена таблица данных для нахождения интеграла.
  4. Теперь в ячейке В33 может быть найдено приближённое значение интеграла. Для этого в ячейку В33 вводим формулу = 0,1*, затем вызываем Мастер функций (нажатием на панели инструментов кнопки Вставка функции (f(x)). В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция — функцию Сумм. Нажимаем кнопку ОК. Появляется диалоговое окно Сумм. В рабочее поле мышью вводим диапазон суммирования В2:В31. Нажимаем кнопку ОК. В ячейке В33 появляется приближённое значение искомого интеграла с недостатком (37,955) .

Сравнивая полученное приближённое значение с истинным значением интеграла (39), можно видеть, что ошибка приближения метода прямоугольников в данном случае равна

Вычисление интегралов методом треугольников= |39 — 37 , 955| = 1 ,045
Вычисление интегралов методом треугольников

Пример 2. Используя метод прямоугольников, вычислить Вычисление интегралов методом треугольниковс заданным шагом Вычисление интегралов методом треугольниковх = 0,05.

  1. Для нахождения определённого интеграла значения подынтегральной функции f(x) должны быть введены в рабочую таблицу Excel в диапазоне Вычисление интегралов методом треугольниковс заданным шагом Вычисление интегралов методом треугольниковх = 0,05. В созданную уже таблицу данных в ячейку А2 вводится левая граница интегрирования (0). В ячейку А3 вводится второе значение аргумента – левая граница диапазона плюс шаг построения (0,05). Затем, выделив блок ячеек А2:А3, автозаполнением получаем все значения аргумента (за правый нижний угол блока протягиваем до ячейки А33, до значения х=1,55).
  2. Далее вводим значения подынтегральной функции. В ячейку В2 необходимо записать её уравнение. Для этого табличный курсор необходимо установить в ячейку В2. Здесь должно оказаться значение косинуса, соответствующее значению аргумента в ячейке А2. Для получения значения косинуса воспользуемся специальной функцией: нажимаем на панели инструментов кнопку Вставка функции ( fх ) . В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция — функцию COS. Нажимаем кнопку ОК. Появляется диалоговое окно COS. Наведя указатель мыши на серое поле окна, при нажатой левой кнопке сдвигаем поле вправо, чтобы открыть столбец данных (А). Указываем значение аргумента косинуса щелчком мыши на ячейке А2. Нажимаем кнопку ОК. В ячейке В2 появляется 1. Теперь необходимо скопировать функцию из ячейки В2. Автозаполнением копируем эту формулу в диапазон В2:В33. В результате должна быть получена таблица данных для нахождения интеграла.
  3. Теперь в ячейке В34 может быть найдено приближённое значение интеграла. Для этого в ячейку В34 вводим формулу = 0,05*, затем вызываем Мастер функций (нажатием на панели инструментов кнопки Вставка функции ( ( fх )) . В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция — функцию Сумм. Нажимаем кнопку ОК. Появляется диалоговое окно Сумм. В рабочее поле мышью вводим диапазон суммирования В2:В32. Нажимаем кнопку ОК. В ячейке В34 появляется приближённое значение искомого интеграла с избытком (1,024056).

Сравнивая полученное приближённое значение с истинным значением интеграла Вычисление интегралов методом треугольников, можно видеть, что ошибка приближения метода прямоугольников в данном случае равна

Вычисление интегралов методом треугольников
Вычисление интегралов методом треугольников

Метод трапеций обычно даёт более точное значение интеграла, чем метод прямоугольников. Криволинейная трапеция заменяется на сумму нескольких трапеций и приближённое значение определённого интеграла находится как сумма площадей трапеций

Вычисление интегралов методом треугольников

Вычисление интегралов методом треугольников

Вычисление интегралов методом треугольников

Пример 3. Методом трапеций найти Вычисление интегралов методом треугольниковс шагом Вычисление интегралов методом треугольниковх = 0,1.

  1. Открываем чистый рабочий лист.
  2. Составляем таблицу данных и f(x)). Пусть первый столбец будет значениями х, а второй соответствующими показателями f(x). Для этого в ячейку А1 вводим слово Аргумент, а в ячейку В1 – слово Функция. В ячейку А2 вводится первое значение аргумента – левая граница диапазона (0). В ячейку А3 вводится второе значение аргумента – левая граница диапазона плюс шаг построения (0,1). Затем, выделив блок ячеек А2:А3, автозаполнением получаем все значения аргумента (за правый нижний угол блока протягиваем до ячейки А33, до значения х=3,1).
  3. Далее вводим значения подынтегральной функции. В ячейку В2 необходимо записать её уравнение (в примере синуса). Для этого табличный курсор необходимо установить в ячейку В2. Здесь должно оказаться значение синуса, соответствующее значению аргумента в ячейке А2. Для получения значения синуса воспользуемся специальной функцией: нажимаем на панели инструментов кнопку Вставка функции f(x). В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция — функцию SIN. Нажимаем кнопку ОК. Появляется диалоговое окно SIN. Наведя указатель мыши на серое поле окна, при нажатой левой кнопке сдвигаем поле вправо, чтобы открыть столбец данных (А). Указываем значение аргумента синуса щелчком мыши на ячейке А2. Нажимаем кнопку ОК. В ячейке В2 появляется 0. Теперь необходимо скопировать функцию из ячейки В2. Автозаполнением копируем эту формулу в диапазон В2:В33. В результате должна быть получена таблица данных для нахождения интеграла.
  4. Теперь в ячейке В34 может быть найдено приближённое значение интеграла по методу трапеций. Для этого в ячейку В34 вводим формулу = 0,1*((В2+В33)/2+, затем вызываем Мастер функций (нажатием на панели инструментов кнопки Вставка функции (f(x)). В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция — функцию Сумм. Нажимаем кнопку ОК. Появляется диалоговое окно Сумм. В рабочее поле мышью вводим диапазон суммирования В3:В32. Нажимаем кнопку ОК и ещё раз ОК. В ячейке В34 появляется приближённое значение искомого интеграла с недостатком (1,997) .

Сравнивая полученное приближённое значение с истинным значением интеграла Вычисление интегралов методом треугольниковможно видеть, что ошибка приближения метода прямоугольников в данном случае вполне приемлемая для практики.

Вычисление интегралов методом треугольников
Вычисление интегралов методом треугольников

  1. Решение упражнений.
  1. Вычислить Вычисление интегралов методом треугольниковметодом прямоугольников, разделив отрезок [0;1] на 20 равных частей.
    Вычисление интегралов методом треугольников
  2. Вычислить методом трапеций Вычисление интегралов методом треугольников
  3. Вычислить методом трапеций Вычисление интегралов методом треугольников
  4. Вычислить методом трапеций Вычисление интегралов методом треугольников
  5. Вычислить Вычисление интегралов методом треугольниковразделив отрезок [0;4] на 40 равных частей.
  6. Вычислить Вычисление интегралов методом треугольниковразделив отрезок [0;8] на 40 равных частей.
  7. Вычислить Вычисление интегралов методом треугольников

🎦 Видео

Метод СимпсонаСкачать

Метод Симпсона

Математика без Ху!ни. Интегралы, часть 4. Интегрирование по частям.Скачать

Математика без Ху!ни. Интегралы, часть 4. Интегрирование по частям.

Приведение определителя к треугольному видуСкачать

Приведение определителя к треугольному виду

Формула СимпсонаСкачать

Формула Симпсона

3.2 Численное интегрирование (лекция)Скачать

3.2 Численное интегрирование (лекция)
Поделиться или сохранить к себе: