Все высоты рб треугольника

Высота равнобедренного треугольника

Равнобедренным треугольником называется такой треугольник, у которого две из трех сторон равны между собой. Равные стороны считаются боковыми сторонами а, а третья сторона в называется основанием равнобедренного треугольника.

Соответственно, в таком треугольнике можно провести три высоты, две из которых будут равны между собой, аналогично сторонам — это высоты, опущенные на боковую сторону треугольника а, а третья высота опускается на основание. Высота треугольника проводится из угла треугольника к противолежащей стороне под прямым углом. Большинство задач с высотой треугольника решаются через прямоугольные треугольники, которые она образует.

Рассмотрим каждый случай по отдельности.

Высота равнобедренного треугольника, опущенная на основание, обладает рядом индивидуальных свойств, присущих только ей и не распространяющихся на другие высоты в таком треугольнике. В частности, высота, проведенная к основанию равнобедренного треугольника, совпадает с медианой и биссектрисой, проведенным к основанию, следовательно, она не только образует прямой угол с основанием, но и делит его на две равные части, как медиана, и аналогично делит угол пополам, как биссектриса. В итоге, высота является своеобразной осью симметрии треугольника и разделяет его на два конгруэнтных прямоугольных треугольника. В таком треугольнике высота является катетом, и чтобы найти ее длину необходимо соотнести стороны равнобедренного треугольника со сторонами прямоугольного. Боковая сторона равнобедренного треугольника становится гипотенузой, а чтобы определить второй катет, основание равнобедренного треугольника нужно разделить пополам, по свойству медианы.

Все высоты рб треугольника

Длина высоты равнобедренного треугольника равна по теореме Пифагора квадратному корню из суммы квадрата боковой стороны равнобедренного треугольника и четверти квадрата основания равнобедренного треугольника:

Все высоты рб треугольника

Второй случай, когда условиями задачи нужно найти высоту, опущенную на боковую сторону равнобедренного треугольника, раскрывается проще всего через площадь треугольника.

Площадь любого треугольника можно найти несколькими способами — например, через три стороны треугольника по формуле Герона, или через высоту, умножив ее на половину стороны, на которую она опущена. И тем, и другим способом получаются одинаковые значения площади, следовательно обе эти формулы можно друг к другу приравнять и отсюда вывести окончательную формулу высоты, опущенную на боковую сторону равнобедренного треугольника.

Формула Герона для равнобедренного треугольника будет иметь несколько упрощенный вид за счет того, что значения боковых сторон повторяются:

Все высоты рб треугольника

Площадь равнобедренного треугольника через высоту, опущенную к боковой стороне

Все высоты рб треугольника

Эту же формулу можно применять для нахождения любой высоты в равнобедренном треугольнике, если поменять в формуле соответствующие стороны местами.

Формула высоты равнобедренного треугольника через боковую сторону и угол при основании α: h=a sin⁡α

Формула через боковую сторону и угол напротив основания β: Все высоты рб треугольника

Формула через основание и угол при нем α: Все высоты рб треугольника

через основание и угол противолежащий ему β: Все высоты рб треугольника

Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Как посчитать высоту равнобедренного треугольника

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Онлайн калькулятор

Все высоты рб треугольника

Чтобы вычислить высоту равнобедренного треугольника вам нужно знать следующие параметры (либо-либо):

  • длину двух равных сторон (a) и длину основания (b)
  • длину двух равных сторон (a) и угол α
  • длину двух равных сторон (a) и угол β
  • длину основания (b) и угол α
  • длину основания (b) и угол β

Введите их в соответствующие поля и получите результат.

Если известны длина стороны а и основания b

Чему равна высота h равнобедренного треугольника если длина сторон , а длина основания

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и длина основания b?

Формула

h = √ a 2 — ( b /2) 2

Пример

Если сторона a = 10 см, а сторона b = 5 см, то:

h = √ 10 2 — ( 5 /2) 2 = √ 100 — 6.25 ≈ 9.68 см

Если известны длина стороны а и угол α

Чему равна высота h равнобедренного треугольника если длина сторон , а угол

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и угол α?

Формула

Пример

Если сторона a = 5 см, а ∠α = 45°, то:

h = 5⋅sin 45 ≈ 3,53 см

Если известны длина стороны а и угол β

Чему равна высота h равнобедренного треугольника если длина сторон , а угол

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и угол β?

Формула

Пример

Если сторона a = 5 см, а ∠β = 30°, то:

Если известны длина стороны b и угол α

Чему равна высота h равнобедренного треугольника если длина основания , а угол

Чему равна высота h у равнобедренного треугольника если известны длина стороны b и угол α?

Формула

Пример

Если сторона b = 20 см, а ∠α = 35°, то:

Если известны длина стороны b и угол β

Чему равна высота h равнобедренного треугольника если длина основания , а угол

Чему равна высота h у равнобедренного треугольника если известны длина стороны b и угол β?

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Свойства высоты равнобедренного треугольника

В данной публикации мы рассмотрим основные свойства высоты равнобедренного треугольника, а также разберем примеры решения задач по данной теме.

Примечание: треугольник называется равнобедренным, если две его стороны равны (боковые). Третья сторона называется основанием.

Видео:НАЙДИТЕ ВЫСОТУ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКАСкачать

НАЙДИТЕ ВЫСОТУ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКА

Свойства высоты в равнобедренном треугольнике

Свойство 1

В равнобедренном треугольнике две высоты, проведенные к боковым сторонам, равны.

Все высоты рб треугольника

Обратная формулировка: Если в треугольнике две высоты равны, значит он является равнобедренным.

Свойство 2

В равнобедренном треугольнике высота, опущенная на основание, одновременно является и биссектрисой, и медианой, и серединным перпендикуляром.

Все высоты рб треугольника

  • BD – высота, проведенная к основанию AC;
  • BD – медиана, следовательно, AD = DC;
  • BD – биссектриса, следовательно, угол α равен углу β.
  • BD – серединный перпендикуляр к стороне AC.

Свойство 3

Если известны стороны/углы равнобедренного треугольника, то:

1. Длина высоты ha, опущенной на основание a, вычисляется по формуле:

Все высоты рб треугольника

2. Длина высоты hb, проведенной к боковой стороне b, равняется:

Все высоты рб треугольника

Все высоты рб треугольника

p – это полупериметр треугольника, рассчитывается таким образом:

Все высоты рб треугольника

3. Высоту к боковой стороне можно найти через синус угла и длину стороны треугольника:

Все высоты рб треугольника

Примечание: к равнобедренному треугольнику, также, применимы общие свойства высоты, представленные в нашей публикации – “Высота в треугольнике abc: определение, виды, свойства”.

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Пример задачи

Задача 1
Дан равнобедренный треугольник, основание которого равно 15 см, а боковая сторона – 12 см. Найдите длину высоты, опущенной к основанию.

Решение
Воспользуемся первой формулой, представленной в Свойстве 3:

Все высоты рб треугольника

Задача 2
Найдите высоту, проведенную к боковой стороне равнобедренного треугольника длиной 13 см. Основание фигуры равняется 10 см.

Решение
Для начала вычислим полупериметр треугольника:

Все высоты рб треугольника

Теперь применим соответствующую формулу для нахождения высоты (представлена в Свойстве 3):

🌟 Видео

Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Формулы равностороннего треугольника #shortsСкачать

Формулы равностороннего треугольника #shorts

Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)

Свойства равнобедренного треугольника. 7 класс.Скачать

Свойства равнобедренного треугольника. 7 класс.

№260. Высота, проведенная к основанию равнобедренного треугольника, равна 7,6 см, а боковая сторонаСкачать

№260. Высота, проведенная к основанию равнобедренного треугольника, равна 7,6 см, а боковая сторона

Нахождение площади равнобедренного треугольника при помощи теоремы Пифагора | Геометрия | АлгебраСкачать

Нахождение площади равнобедренного треугольника при помощи теоремы Пифагора  |  Геометрия | Алгебра

Высота прямоугольного треугольникаСкачать

Высота прямоугольного треугольника

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

№263. Высоты, проведенные к боковым сторонам АВ и АС остроугольного равнобедренного треугольникаСкачать

№263. Высоты, проведенные к боковым сторонам АВ и АС остроугольного равнобедренного треугольника

Высоты треугольника.Скачать

Высоты треугольника.

Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16Скачать

Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16

Формулы для равностороннего треугольника.Скачать

Формулы для  равностороннего треугольника.

№488. Найдите: а) высоту равностороннего треугольника, если его сторона равна 6 см;Скачать

№488. Найдите: а) высоту равностороннего треугольника, если его сторона равна 6 см;

Высота в прямоугольном треугольнике. Как найти? Полезная формулаСкачать

Высота в прямоугольном треугольнике. Как найти? Полезная формула
Поделиться или сохранить к себе: