Все теоремы про треугольник

Треугольник. Формулы и свойства треугольников.
Содержание
  1. Типы треугольников
  2. По величине углов
  3. По числу равных сторон
  4. Вершины углы и стороны треугольника
  5. Свойства углов и сторон треугольника
  6. Теорема синусов
  7. Теорема косинусов
  8. Теорема о проекциях
  9. Формулы для вычисления длин сторон треугольника
  10. Медианы треугольника
  11. Свойства медиан треугольника:
  12. Формулы медиан треугольника
  13. Биссектрисы треугольника
  14. Свойства биссектрис треугольника:
  15. Формулы биссектрис треугольника
  16. Высоты треугольника
  17. Свойства высот треугольника
  18. Формулы высот треугольника
  19. Окружность вписанная в треугольник
  20. Свойства окружности вписанной в треугольник
  21. Формулы радиуса окружности вписанной в треугольник
  22. Окружность описанная вокруг треугольника
  23. Свойства окружности описанной вокруг треугольника
  24. Формулы радиуса окружности описанной вокруг треугольника
  25. Связь между вписанной и описанной окружностями треугольника
  26. Средняя линия треугольника
  27. Свойства средней линии треугольника
  28. Периметр треугольника
  29. Формулы площади треугольника
  30. Формула Герона
  31. Равенство треугольников
  32. Признаки равенства треугольников
  33. Первый признак равенства треугольников — по двум сторонам и углу между ними
  34. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  35. Третий признак равенства треугольников — по трем сторонам
  36. Подобие треугольников
  37. Признаки подобия треугольников
  38. Первый признак подобия треугольников
  39. Второй признак подобия треугольников
  40. Третий признак подобия треугольников
  41. Основные факты о треугольниках
  42. Готовьтесь к экзамену вместе с образовательным порталом «Школково»
  43. Все, что нужно знать о треугольнике
  44. ТРЕУГОЛЬНИК.
  45. Площадь треугольника.
  46. Медиана треугольника
  47. Биссектриса треугольника
  48. Высота треугольника
  49. Теорема синусов:
  50. Прямоугольный треугольник
  51. Соотношение элементов в прямоугольном треугольнике:
  52. Равнобедренный треугольник.
  53. Правильный треугольник
  54. Средняя линия треугольника
  55. Внешний угол треугольника
  56. Признаки равенства треугольников:
  57. Признаки подобия треугольников:
  58. Теорема Менелая
  59. 🎦 Видео

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Типы треугольников

По величине углов

Все теоремы про треугольник

Все теоремы про треугольник

Все теоремы про треугольник

По числу равных сторон

Все теоремы про треугольник

Все теоремы про треугольник

Все теоремы про треугольник

Видео:ЕГЭ 2024. ВСЁ ПРО ТРЕУГОЛЬНИКИ за 15 минутСкачать

ЕГЭ 2024. ВСЁ ПРО ТРЕУГОЛЬНИКИ за 15 минут

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Все теоремы про треугольник

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Медианы треугольника

Все теоремы про треугольник

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:Треугольники. 7 класс.Скачать

Треугольники. 7 класс.

Биссектрисы треугольника

Все теоремы про треугольник

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:Геометрия. 7 класс. Теоремы. Т3. Первый признак равенства треугольников.Скачать

Геометрия. 7 класс. Теоремы. Т3. Первый признак равенства треугольников.

Высоты треугольника

Все теоремы про треугольник

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:Неравенства треугольника. 7 класс.Скачать

Неравенства треугольника. 7 класс.

Окружность вписанная в треугольник

Все теоремы про треугольник

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:Признаки равенства треугольников. 7 класс.Скачать

Признаки равенства треугольников. 7 класс.

Окружность описанная вокруг треугольника

Все теоремы про треугольник

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Связь между вписанной и описанной окружностями треугольника

Видео:Геометрия 7 класс (Урок№10 - Первый признак равенства треугольников.)Скачать

Геометрия 7 класс (Урок№10 - Первый признак равенства треугольников.)

Средняя линия треугольника

Свойства средней линии треугольника

Все теоремы про треугольник

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Периметр треугольника

Все теоремы про треугольник

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:Соотношения между сторонами и углами треугольника. 7 класс.Скачать

Соотношения между сторонами и углами треугольника. 7 класс.

Формулы площади треугольника

Все теоремы про треугольник

Формула Герона

S =a · b · с
4R

Видео:Теорема Пифагора. 8 КЛАСС | Математика | TutorOnlineСкачать

Теорема Пифагора. 8 КЛАСС | Математика | TutorOnline

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Видео:Геометрия 7 класс (Урок№9 - Треугольник.)Скачать

Геометрия 7 класс (Урок№9 - Треугольник.)

Подобие треугольников

Все теоремы про треугольник

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

Основные факты о треугольниках

Определения

Угол – это геометрическая фигура, состоящая из точки и двух лучей, выходящих из этой точки. Градусная мера угла может принимать значения от (0^circ) до (180^circ) включительно.

Угол (alpha) называется острым, если (0^circ , прямым – если (alpha=90^circ) , тупым – если (90^circ , и развернутым – если (alpha=180^circ) .

Биссектриса угла – это луч, выходящий из вершины угла и делящий угол пополам.

Смежные углы – это два угла, у которых общая вершина и одна общая сторона, а две другие стороны образуют прямую.

Вертикальные углы – это два угла, образованные пересечением двух прямых и не являющиеся смежными.

Теорема

Смежные углы (alpha) и (beta) в сумме дают (180^circ) .

Вертикальные углы равны: (alpha=gamma) .

Все теоремы про треугольник

Определения

Треугольник – это геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой (называемых вершинами треугольника), и отрезков, соединяющих эти точки (называемых сторонами треугольника). Треугольник со своей внутренностью будем сокращенно называть также треугольником.

Угол (внутренний) треугольника – угол, образованный вершиной треугольника и двумя его сторонами.

Все теоремы про треугольник

Теоремы: признаки равенства треугольников

1. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

2. Если сторона и два прилежащих угла одного треугольника соответственно равны стороне и двум прилежащим углам другого треугольника, то такие треугольники равны.

3. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Определение

Медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Биссектриса треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны.

Две прямые называются перпендикулярными, если угол между ними равен (90^circ) .

Перпендикуляр из точки к прямой – это отрезок, соединяющий данную точку с точкой на прямой, проведенный под углом (90^circ) .

Высота треугольника – это перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону.

Замечание

Если в треугольнике один угол тупой, то высоты, опущенные из вершин острых углов, упадут не на сторону, а на продолжение стороны (рис. 1).

Теорема

В любом треугольнике высоты (или их продолжения) пересекаются в одной точке (рис. 1 и 2), биссектрисы пересекаются в одной точке (рис. 3), медианы пересекаются в одной точке (рис. 4).

Все теоремы про треугольник

Определение

Две различные прямые на плоскости называются параллельными, если они не пересекаются.

Замечание

Заметим, что на плоскости существует три вида взаимного расположения прямых: совпадают, пересекаются и параллельны.

Аксиома параллельных прямых

Через точку, не лежащую на данной прямой, проходит единственная прямая, параллельная данной.

Следствия из аксиомы

1. Если прямая пересекает одну из параллельных прямых, то она пересекает и другую прямую.

2. Две прямые, параллельные третьей прямой, параллельны.

Теоремы: признаки параллельности прямых

1. Если при пересечении двух прямых (a) и (b) секущей (c) накрест лежащие углы равны: (angle 1=angle 2) , то такие прямые параллельны.

2. Если при пересечении двух прямых (a) и (b) секущей (c) сумма односторонних углов (angle 1) и (angle 3) равна (180^circ) , то такие прямые параллельны.

3. Если при пересечении двух прямых (a) и (b) секущей (c) соответственные углы равны: (angle 1=angle 4) , то такие прямые параллельны.

Все теоремы про треугольник

Теоремы: свойства параллельных прямых

1. Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.

2. Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна (180^circ) .

3. Если две параллельные прямые пересечены секущей, то соответственные углы равны.

Определения

Треугольник называется остроугольным, если все его углы острые.

Треугольник называется тупоугольным, если один его угол тупой (остальные — острые).

Треугольник называется прямоугольным, если один его угол прямой (остальные — острые).

Теорема

Сумма внутренних углов треугольника равна (180^circ) .

Доказательство

Рассмотрим произвольный треугольник (ABC) и покажем, что (angle A + angle B + angle C = 180^circ) .

Проведём через вершину (B) прямую (a) , параллельную стороне (AC) .

Все теоремы про треугольник

Углы (1) и (4) являются накрест лежащими углами при пересечении параллельных прямых (a) и (AC) секущей (AB) , а углы (3) и (5) – накрест лежащими углами при пересечении тех же параллельных прямых секущей (BC) . Поэтому [begin &angle 4 = angle 1, angle 5 = angle 3. qquad qquad qquad (1) end]

Очевидно, сумма углов (4, 2) и (5) равна развёрнутому углу с вершиной (B) , то есть (angle 4 + angle 2 + angle 5 = 180^circ) . Отсюда, учитывая равенства ((1)) , получаем: (angle 1 + angle 2 + angle 3 = 180^circ) .

Определение

Внешний угол треугольника – это угол, смежный с каким-нибудь внутренним углом треугольника.

Теорема

Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним: (angle BCD=angle BAC+angle ABC) .

Доказательство

Все теоремы про треугольник

Угол (4) – внешний угол треугольника, смежный с углом (3) . Так как (angle 4 + angle 3 = 180^circ) , а по теореме о сумме углов треугольника (angle 1 + angle 2 + angle 3 = 180^circ) , то (angle 4 = angle 1 + angle 2) , что и требовалось доказать.

Определения

Треугольник называется равнобедренным, если две его стороны равны.
Эти стороны называются боковыми сторонами треугольника, а третья сторона — основанием.

Треугольник называется равносторонним, если все его стороны равны.
Равносторонний треугольник, очевидно, является и равнобедренным.

Теорема

В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой.

Доказательство

Пусть (ABC) – равнобедренный треугольник, (AB = BC) , (BD) – биссектриса (проведённая к основанию).

Рассмотрим треугольники (ABD) и (BCD) : (AB = BC) , (angle ABD = angle CBD) , (BD) – общая. Таким образом, (triangle ABD = triangle BCD) по двум сторонам и углу между ними.

Из равенства этих треугольников следует, что (AD = DC) , следовательно, (BD) – медиана.

Все теоремы про треугольник

Кроме того, в равных треугольниках против равных сторон лежат равные углы, а (AB = BC) , следовательно, [begin &angle ADB = angle CDB, qquad qquad qquad (2) end] но (angle ADB + angle CDB = angle ADC) – развёрнутый, следовательно, (angle ADB + angle CDB = 180^circ) , откуда при учёте ((2)) : (angle ADB = 90^circ = angle CDB) , то есть (BD) – высота.

Верны и другие утверждения:
В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Теорема

В равнобедренном треугольнике углы при основании равны.

Доказательство

Проведем биссектрису (BD) (см. рисунок из предыдущей теоремы). Тогда (triangle ABD=triangle CBD) по первому признаку, следовательно, (angle A=angle C) .

Теоремы: признаки равнобедренного треугольника

1. Если в треугольнике два угла равны, то треугольник равнобедренный.

2. Если в треугольнике высота является медианой или биссектрисой, то треугольник равнобедренный.

Теорема о соотношении между сторонами и углами треугольника

В треугольнике против большей стороны лежит больший угол.

В треугольнике против большего угла лежит большая сторона.

Теорема: неравенство треугольника

В треугольнике сумма любых двух сторон больше третьей стороны.

Другая формулировка: в треугольнике разность любых двух сторон меньше третьей стороны.

Определения

В прямоугольном треугольнике большая сторона (то есть сторона, лежащая напротив прямого угла) называется гипотенузой.
Две другие стороны называются катетами.

Теоремы: свойства прямоугольного треугольника

1. Сумма острых углов прямоугольного треугольника равна (90^circ) .

2. В прямоугольном треугольнике катет, лежащий против угла (30^circ) , равен половине гипотенузы.

Верно и обратное: если катет равен половине гипотенузы, то он лежит против угла (30^circ) .

Все теоремы про треугольник

Подготовка выпускников к сдаче ЕГЭ, как правило, начинается с повторения базовой теории по планиметрии, в том числе и по теме «Треугольники». Знакомство учащихся с этим разделом геометрии начинается еще в средней школе. Неудивительно, что потребность в повторении основных правил и теории по теме «Треугольник» возникает у многих выпускников. При этом решать планиметрические задачи обязательно должны уметь все учащиеся. Подобные задания включены как в базовый, так и в профильный уровень аттестационного испытания. Разобравшись с теорией и практическими упражнениями, в том числе и на вычисление вертикальных углов треугольника, старшеклассники смогут решать задачи с любым количеством действий и рассчитывать на получение конкурентных баллов по итогам сдачи ЕГЭ.

Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Готовьтесь к экзамену вместе с образовательным порталом «Школково»

Занимаясь перед сдачей ЕГЭ, многие учащиеся сталкиваются с проблемой поиска базовой теории по геометрии о треугольниках. Школьных учебников в нужный момент может просто не оказаться под рукой. А найти необходимые формулы иногда оказывается достаточно сложно даже в Интернете.

Вместе с образовательным порталом «Школково» выпускники смогут качественно подготовиться к сдаче аттестационного испытания. Вся базовая теория о равнобедренных и прямоугольных треугольниках систематизирована и изложена нашими специалистами с учетом богатого опыта в максимально доступной форме. Изучив представленную информацию, школьники смогут вспомнить материал, который вызывает определенные затруднения.

Чтобы хорошо подготовиться к экзамену, учащимся, проживающим в Москве и других городах России, необходимо не только повторить теорию о прямоугольных и равнобедренных треугольниках, но и попрактиковаться в выполнении соответствующих упражнений. Задачи по данной теме вы можете найти в разделе «Каталог». Для каждого задания наши специалисты прописали подробный ход решения и указали правильный ответ. Последовательно выполняя простые и более сложные упражнения по данной теме, учащиеся смогут научиться применять на практике теоремы равенства треугольников и другую теорию, которую необходимо усвоить при подготовке к ЕГЭ. Перечень заданий в соответствующем разделе постоянно дополняется и обновляется.

Попрактиковаться в решении задач, в которых применяется теория смежных углов и другие теоремы, школьники могут в режиме онлайн.

По желанию учащегося любое упражнение можно сохранить в «Избранное». Еще раз повторив базовую теорию о прямоугольных и равнобедренных треугольниках, выпускник может в дальнейшем вернуться к заданию, которое вызвало затруднения, и обсудить алгоритм его решения с преподавателем.

Видео:Геометрия. 7 класс. Теоремы. Т5. Первое свойство равнобедренного треугольника.Скачать

Геометрия. 7 класс. Теоремы. Т5. Первое свойство равнобедренного треугольника.

Все, что нужно знать о треугольнике

Все теоремы про треугольникПри решении геометрических задач полезно следовать такому алгоритму. Во время чтения условия задачи необходимо

  • Сделать чертеж. Чертеж должен максимально соответствовать условию задачи, так его основная задача помочь найти ход решения
  • Нанести все данные из условия задачи на чертеж
  • Выписать все геометрические понятия, которые встречаются в задаче
  • Вспомнить все теоремы, которые относятся к этим понятию
  • Нанести на чертеж все соотношения между элементами геометрической фигуры, которые следуют из этих теорем

Например, если в задаче встречается слова биссектриса угла треугольника, нужно вспомнить определение и свойства биссектрисы и обозначить на чертеже равные или пропорциональные отрезки и углы.

В этой статье вы найдете основные свойства треугольника, которые необходимо знать для успешного решения задач.

ТРЕУГОЛЬНИК.

Площадь треугольника.

1. Все теоремы про треугольник,

здесь Все теоремы про треугольник— произвольная сторона треугольника, Все теоремы про треугольник— высота, опущенная на эту сторону.

Все теоремы про треугольник

2. Все теоремы про треугольник,

здесь Все теоремы про треугольники Все теоремы про треугольник— произвольные стороны треугольника, Все теоремы про треугольник— угол между этими сторонами:

Все теоремы про треугольник

3. Формула Герона:

Все теоремы про треугольник

— здесь Все теоремы про треугольник— длины сторон треугольника, Все теоремы про треугольник— полупериметр треугольника, Все теоремы про треугольник

4. Все теоремы про треугольник,

здесь Все теоремы про треугольник— полупериметр треугольника, Все теоремы про треугольник— радиус вписанной окружности.

Все теоремы про треугольник

Пусть Все теоремы про треугольник— длины отрезков касательных.

Все теоремы про треугольник

Тогда формулу Герона можно записать в таком виде:

5. Все теоремы про треугольник

6. Все теоремы про треугольник,

здесь Все теоремы про треугольник— длины сторон треугольника, Все теоремы про треугольник— радиус описанной окружности.

Все теоремы про треугольник

Если на стороне треугольника взята точка, которая делит эту сторону в отношении m:n, то отрезок, соединяющий эту точку с вершиной противолежащего угла делит треугольник на два треугольника, площади которых относятся как m:n:

Все теоремы про треугольник

Все теоремы про треугольник

Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Медиана треугольника

— это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Все теоремы про треугольник

Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении 2:1, считая от вершины.

Все теоремы про треугольник

Точка пересечения медиан правильного треугольника делит медиану на два отрезка, меньший из которых равен радиусу вписанной окружности, а больший — радиусу описанной окружности.

Все теоремы про треугольникРадиус описанной окружности в два раза больше радиуса вписанной окружности: R=2r

Длина медианы произвольного треугольника вычисляется по формуле:

Все теоремы про треугольник,

здесь Все теоремы про треугольник— медиана, проведенная к стороне Все теоремы про треугольник, Все теоремы про треугольник— длины сторон треугольника.

Биссектриса треугольника

— это отрезок биссектрисы любого угла треугольника, соединяющий вершину этого угла с противоположной стороной.

Все теоремы про треугольник

Биссектриса треугольника делит сторону на отрезки, пропорциональные прилежащим сторонам:

Все теоремы про треугольник

Биссектрисы треугольника пересекаются в одной точке, которая является центром вписанной окружности.

Все теоремы про треугольник

Все точки биссектрисы угла равноудалены от сторон угла.

Все теоремы про треугольник

Высота треугольника

— это отрезок перпендикуляра, опущенный из вершины треугольника на противоположную сторону, или ее продолжение. В тупоугольном треугольнике высота, проведенная из вершины острого угла лежит вне треугольника.

Все теоремы про треугольник

Высоты треугольника пересекаются в одной точке, которая называется ортоцентром треугольника.

Чтобы найти высоту треугольника, проведенную к стороне Все теоремы про треугольник, нужно любым доступным способом найти его площадь, а затем воспользоваться формулой:

Все теоремы про треугольник

Центр окружности, описанной около треугольника, лежит в точке пересечения серединных перпендикуляров, проведенных к сторонам треугольника.

Все теоремы про треугольник

Радиус описанной окружности треугольника можно найти по таким формулам:

Все теоремы про треугольник

— здесь Все теоремы про треугольник— длины сторон треугольника, Все теоремы про треугольник— площадь треугольника.

Все теоремы про треугольник,

где Все теоремы про треугольник— длина стороны треугольника, Все теоремы про треугольник— противолежащий угол. (Эта формула вытекает из теоремы синусов).

Неравенство треугольника

Каждая сторона треугольника меньше суммы и больше разности двух других.

Сумма длин любых двух сторон всегда больше длины третьей стороны:

Все теоремы про треугольникc» title=»a+b>c»/> Все теоремы про треугольник

Напротив большей стороны лежит больший угол; напротив большего угла лежит большая сторона:

Если Все теоремы про треугольникВсе теоремы про треугольник, то Все теоремы про треугольник Все теоремы про треугольники наоборот.

Теорема синусов:

стороны треугольника пропорциональны синусам противолежащих углов:

Все теоремы про треугольник

Все теоремы про треугольник

Теорема косинусов:

квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними:

Все теоремы про треугольник

Прямоугольный треугольник

это треугольник, один из углов которого равен 90°.

Сумма острых углов прямоугольного треугольника равна 90°.

Гипотенуза — это сторона, которая лежит против угла 90°. Гипотенуза является наибольшей стороной.

Теорема Пифагора:

квадрат гипотенузы равен сумме квадратов катетов: Все теоремы про треугольник

Все теоремы про треугольник

Радиус окружности, вписанной в прямоугольный треугольник, равен

Все теоремы про треугольник,

здесь Все теоремы про треугольник— радиус вписанной окружности, Все теоремы про треугольник— катеты, Все теоремы про треугольник— гипотенуза:

Все теоремы про треугольник

Центр окружности, описанной около прямоугольного треугольника лежит в середине гипотенузы:

Все теоремы про треугольник

Все теоремы про треугольник

Медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы.

Определение синуса, косинуса , тангенса и котангенса прямоугольного треугольника смотрите здесь.

Соотношение элементов в прямоугольном треугольнике:

Квадрат высоты прямоугольного треугольника, проведенной из вершины прямого угла, равен произведению проекций катетов на гипотенузу:

Все теоремы про треугольник

Квадрат катета равен произведению гипотенузы на проекцию катета на гипотенузу:

Все теоремы про треугольник

Все теоремы про треугольник

Все теоремы про треугольник:

Все теоремы про треугольник

Катет, лежащий против угла Все теоремы про треугольникравен половине гипотенузы:

Все теоремы про треугольникВсе теоремы про треугольник

Равнобедренный треугольник.

Биссектриса равнобедренного треугольника, проведенная к основанию является медианой и высотой.

В равнобедренном треугольнике углы при основании равны.

Все теоремы про треугольник

Все теоремы про треугольник— угол при вершине.

Все теоремы про треугольники Все теоремы про треугольник— боковые стороны, Все теоремы про треугольник

Все теоремы про треугольники Все теоремы про треугольник— углы при основании. Все теоремы про треугольник

Все теоремы про треугольник— высота, биссектриса и медиана.

Внимание! Высота, биссектриса и медиана, проведенные к боковой стороне не совпадают.

Правильный треугольник

(или равносторонний треугольник ) — это треугольник, все стороны и углы которого равны между собой.

Все теоремы про треугольник

Площадь правильного треугольника равна

Все теоремы про треугольник,

где Все теоремы про треугольник— длина стороны треугольника.

Центр окружности, вписанной в правильный треугольник, совпадает с центром окружности, описанной около правильного треугольника и лежит в точке пересечения медиан.

Точка пересечения медиан правильного треугольника делит медиану на два отрезка, меньший из которых равен радиусу вписанной окружности, а больший — радиусу описанной окружности.

Если один из углов равнобедренного треугольника равен 60°, то этот треугольник правильный.

Средняя линия треугольника

— это отрезок, соединяющий середины двух сторон.

На рисунке DE — средняя линия треугольника ABC.

Средняя линия треугольника параллельна третьей стороне и равна ее половине: DE||AC, AC=2DE

Все теоремы про треугольник

Внешний угол треугольника

— это угол, смежный какому либо углу треугольника.

Внешний угол треугольника равен сумме двух углов, не смежных с ним.

Все теоремы про треугольник

Тригонометрические функции внешнего угла:

Все теоремы про треугольник

Все теоремы про треугольник

Все теоремы про треугольник

Признаки равенства треугольников:

1 . Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Все теоремы про треугольник

2 . Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Все теоремы про треугольник

3 Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Все теоремы про треугольник

Важно: поскольку в прямоугольном треугольнике два угла заведомо равны, то для равенства двух прямоугольных треугольников требуется равенство всего двух элементов: двух сторон, или стороны и острого угла.

Признаки подобия треугольников:

1 . Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, и углы, заключенные между этими сторонами равны, то эти треугольники подобны.

2 . Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то эти треугольники подобны.

3 . Если два угла одного треугольника равны двум углам другого треугольника, то эти треугольники подобны.

Важно: в подобных треугольниках сходственные стороны лежат против равных углов.

Теорема Менелая

Пусть прямая пересекает треугольник Все теоремы про треугольник, причем Все теоремы про треугольник– точка ее пересечения со стороной Все теоремы про треугольник, Все теоремы про треугольник– точка ее пересечения со стороной Все теоремы про треугольник, и Все теоремы про треугольник– точка ее пересечения с продолжением стороны Все теоремы про треугольник. Тогда

🎦 Видео

Первый признак равенства треугольников. 7 класс.Скачать

Первый признак равенства треугольников. 7 класс.

Геометрия 7 класс (Урок№14 - Второй и третий признаки равенства треугольников.)Скачать

Геометрия 7 класс (Урок№14 - Второй и третий признаки равенства треугольников.)

7 класс, 31 урок, Теорема о сумме углов треугольникаСкачать

7 класс, 31 урок, Теорема о сумме углов треугольника

9 класс, 15 урок, Решение треугольниковСкачать

9 класс, 15 урок, Решение треугольников
Поделиться или сохранить к себе: