гипотенузу или катеты в прямоугольном треугольнике.
a , b — катеты
c — гипотенуза
α , β — острые углы
Формулы для катета, ( a ):
Формулы для катета, ( b ):
Формулы для гипотенузы, ( c ):
Формулы сторон по теореме Пифагора, ( a , b ):
- Прямоугольный треугольник формулы
- Прямоугольный треугольник: основные формулы
- Прямоугольный треугольник: формулы площади и проекции
- Прямоугольный треугольник: формулы тригонометрия
- Прямоугольный треугольник: формулы для описанной окружности
- Прямоугольный треугольник: формулы для вписанной окружности
- Все формулы прямоугольного треугольника — примеры расчетов
- Формулы
- 📺 Видео
Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать
Прямоугольный треугольник формулы
Треугольник называется прямоугольным, если у него один из углов является прямым. Стороны, прилежащие к прямому углу, называются катетами, а сторона, лежащая напротив прямого угла, гипотенузой.
Прямоугольный треугольник: основные формулы
Прямоугольный треугольник: формулы площади и проекции
- Высота прямоугольного треугольника, проведенная к гипотенузе, равна : h = (ab):c.
- Высота прямоугольного треугольника, опущенная на гипотенузу, есть среднее пропорциональное между проекциями катетов на гипотенузу: CH 2 = AH·BH.
- Катет прямоугольного треугольника — среднее пропорциональное или среднее геометрическое между гипотенузой и проекцией этого катета на гипотенузу: CA 2 = AB·AH; CB 2 = AB·BH.
- Медиана, проведенная к гипотенузе прямоугольного треугольника, равна ее половине.
- Площадь прямоугольного треугольника равна половине произведения катетов. S = (ab):2.
- Площадь прямоугольного треугольника равна половине произведения гипотенузы и высоты. S = (hc):2.
Прямоугольный треугольник: формулы тригонометрия
- Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе. cosα = AC: AB.
- Синус острого угла прямоугольного треугольника равен отношению противолежащего катета к гипотенузе. sinα = BC:AB.
- Тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему. tgα = BC:AC.
- Котангенс острого угла прямоугольного треугольника равен отношению прилежащего катета к противолежащему. ctgα = AC:BC.
- Основное тригонометрическое тождество: cos 2 α + sin 2 α = 1.
- Теорема косинусов: b 2 = a 2 + c 2 – 2ac·cosα.
- Теорема синусов: CB :sinA = AC : sinB = AB.
Прямоугольный треугольник: формулы для описанной окружности
- Радиус описанной окружности равен половине гипотенузы : R=AB:2.
- Центр описанной окружности лежит на середине гипотенузы.
Прямоугольный треугольник: формулы для вписанной окружности
Радиус окружности, вписанной в прямоугольный треугольник, вычисляется по формуле: r = (a + b -c):2.
Рассмотрим применение тригонометрических формул прямоугольного треугольника при решении задания 6(вариант 32) из сборника для подготовки к ЕГЭ по математике профиль автора Ященко.
В треугольнике ABC угол С равен 90°, sinA = 11/14, AC =10√3. Найти АВ.
- Применяя основное тригонометрическое тождество, найдем cosA = 5√3/14.
- По определению косинуса острого угла прямоугольного треугольника имеем: cosA = AC : AB, AB = AC : cosA = 10√3·14:5√3 = 28.
Видео:Все свойства и формулы прямоугольного треугольникаСкачать
Все формулы прямоугольного треугольника — примеры расчетов
Видео:Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !Скачать
Формулы
1. Сумма острых углов прямоугольного треугольника равна 90 0 :
2. Синус острого угла в прямоугольном треугольнике равен отношению противолежащего катета к гипотенузе:
3. Косинус острого угла в прямоугольном треугольнике равен отношению прилежащего катета к гипотенузе:
4. Тангенс острого угла равен отношению противолежащего катета к прилежащему катету:
5. Котангенс острого угла равен отношению прилежащего катета к противолежащему катету:
6. Секанс острого угла равен отношению гипотенузы к прилежащему катету:
7. Косеканс острого угла равен отношению гипотенузы к противолежащему:
8. Катет, противолежащий углу, равен произведению гипотенузы на синус этого угла:
9. Катет, прилежащий углу, равен произведению гипотенузы на косинус этого угла:
10. Катет, противолежащий углу, равен произведению второго катета на тангенс угла:
11. Катет, прилежащий углу, равен произведению второго катета на котангенс угла:
12. Гипотенуза равна отношению катета к синусу противолежащего угла, и/или частному отношению катета и косинуса прилежащего угла (угла между ними):
13. Теорема Пифагора: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
14. Медианы, проведенные к катетам прямоугольного треугольника:
15. Медиана, проведенная к гипотенузе:
16. Радиус окружности, описанной около прямоугольного треугольника:
17. Радиус окружности, вписанной в прямоугольный треугольник:
18. Площадь прямоугольного треугольника равна половине произведения катетов треугольника:
📺 Видео
Все формулы, связанные с прямоугольным треугольникомСкачать
Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать
Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать
Основное тригонометрическое тождество. 8 класс.Скачать
Свойства прямоугольного треугольника. 7 класс.Скачать
Теорема Пифагора для чайников)))Скачать
Площадь треугольника. Как найти площадь треугольника?Скачать
Все формулы площади треугольниковСкачать
ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать
Как находить площадь любой фигуры? Геометрия | МатематикаСкачать
8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольникаСкачать
Математика | Метрические соотношения в прямоугольном треугольникеСкачать
Высота прямоугольного треугольникаСкачать
ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать
Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать
Нахождение стороны прямоугольного треугольникаСкачать
8 класс, 26 урок, Пропорциональные отрезки в прямоугольном треугольникеСкачать