Внешняя высота в треугольнике

Определение и свойства высоты треугольника

В данной публикации мы рассмотрим определение высоты треугольника, продемонстрируем, как она выглядит в зависимости от вида треугольника, а также перечислим ее основные свойства.

Содержание
  1. Определение высоты треугольника
  2. Высота в разных видах треугольников
  3. Свойства высоты треугольника
  4. Свойство 1
  5. Свойство 2
  6. Свойство 3
  7. Свойство 4
  8. Высота треугольника. Задача Фаньяно
  9. Высота треугольника. Свойство высоты прямоугольного треугольника
  10. Расположение высот у треугольников различных типов
  11. Ортоцентр треугольника
  12. Расположение ортоцентров у треугольников различных типов
  13. Ортоцентрический треугольник
  14. Задача Фаньяно
  15. Треугольники общего вида
  16. Треугольники общего вида.
  17. Свойства медиан:
  18. Свойства высот:
  19. Прямоугольный треугольник и его свойства:
  20. Некоторые свойства прямоугольного треугольника:
  21. Соотношение между сторонами и углами в прямоугольном треугольнике:
  22. Значения тригонометрических функций некоторых углов:
  23. Тригонометрические тождества:
  24. Подобие треугольников
  25. Признаки подобия треугольников:
  26. Теорема синусов
  27. Теорема косинусов
  28. 🌟 Видео

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Определение высоты треугольника

Высота треугольника – это перпендикуляр, который опущен из вершины фигуры на противоположную сторону.

Основание высоты – точка на противоположной стороне треугольника, которую пересекает высота (или точка пересечения их продолжений).

Обычно высота обозначается буквой h (иногда как ha – это означает, что она проведена к стороне a).

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Высота в разных видах треугольников

В зависимости от вида фигуры высота может:

  • проходить внутри треугольника (в остроугольном △);
    Внешняя высота в треугольнике
  • проходить за рамками треугольника (в тупоугольном △);
    Внешняя высота в треугольнике
  • являться одним из катетов (в прямоугольном △), за исключением высоты, проведенной к гипотенузе.
    Внешняя высота в треугольнике

Видео:Построение высоты в треугольникеСкачать

Построение высоты в треугольнике

Свойства высоты треугольника

Свойство 1

Все три высоты в треугольнике (или их продолжения) пересекаются в одной точке, которая называется ортоцентром (точка O на чертежах ниже).

  • в остроугольном треугольнике;
    Внешняя высота в треугольнике
  • в тупоугольном треугольнике;
    Внешняя высота в треугольнике
  • в прямоугольном треугольнике.
    Внешняя высота в треугольнике
    Вершина A является, в т.ч., точкой пересечения высот.

Свойство 2

При пересечении двух высот в треугольнике, образуются следующие подобные треугольники:

  • ABE∼△CBF: по двум углам (∠ABC – общий, ∠AEB и ∠CFB являются прямыми).
    Внешняя высота в треугольнике
  • AFG∼△CEG: по двум углам (∠AFG и ∠CEG – прямые, ∠AGF и ∠CGE равны как вертикальные углы).
  • ABC∼△BEF: по трем равным углам (∠ABC = ∠EBF, ∠ACB =BFE,CAB =BEF).
    Внешняя высота в треугольнике
    Примечание: доказательство подобия последней пары треугольников достаточно длинное и не является целью данной статьи, поэтому подробно останавливаться на нем будем.

Свойство 3

Точка пересечения высот в остроугольном треугольнике является центром окружности, вписанной в его ортотреугольник.

Внешняя высота в треугольнике

Ортотреугольник – треугольник, вершинами которого являются основания высот △ABC. В нашем случае – это △DEF.

Свойство 4

Точки, которые симметричны ортоцентру треугольника относительно его сторон, лежат на окружности, описанной вокруг этого треугольника.

Внешняя высота в треугольнике

Примечание: формулы для нахождения высоты треугольника подробно рассмотрены в нашей публикации – “Как найти высоту в треугольнике abc”.

Видео:Высота прямоугольного треугольникаСкачать

Высота прямоугольного треугольника

Высота треугольника. Задача Фаньяно

Внешняя высота в треугольникеВысота треугольника. Свойство высоты прямоугольного треугольника
Внешняя высота в треугольникеРасположение высот у треугольников различных типов
Внешняя высота в треугольникеОртоцентр треугольника
Внешняя высота в треугольникеРасположение ортоцентров у треугольников различных типов
Внешняя высота в треугольникеОртоцентрический треугольник
Внешняя высота в треугольникеЗадача Фаньяно

Видео:Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

Высота треугольника. Свойство высоты прямоугольного треугольника

Определение 1 . Высотой треугольника называют перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противолежащую сторону треугольника. Основанием высоты называют основание этого перпендикуляра (рис.1).

Внешняя высота в треугольнике

На рисунке 1 изображена высота BD , проведённая из вершины B треугольника ABC . Точка D – основание высоты.

Для высоты прямоугольного треугольника, проведённой из вершины прямого угла, справедливо следующее утверждение.

Утверждение . Длина высоты прямоугольного треугольника, опущенной на гипотенузу, является средним геометрическим между длинами отрезков, на которые основание высоты делит гипотенузу (рис.2).

Внешняя высота в треугольнике

Доказательство . Углы треугольников BCD и ACD (рис.2) удовлетворяют соотношениям

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Таким образом, длина отрезка CD является средним геометрическим между длинами отрезков BD и AD , что и требовалось доказать.

Высоты можно провести из каждой вершины треугольника, однако у треугольников различных типов высоты располагаются по-разному, как показано в следующей таблице.

Видео:Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

Расположение высот у треугольников различных типов

ФигураРисунокОписание
Остроугольный треугольникВнешняя высота в треугольникеВсе высоты остроугольного треугольника лежат внутри треугольника.
Внешняя высота в треугольнике
Внешняя высота в треугольнике
Прямоугольный треугольникВнешняя высота в треугольникеВысоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника
Внешняя высота в треугольнике
Внешняя высота в треугольнике
Тупоугольный треугольникВнешняя высота в треугольникеВысоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника
Внешняя высота в треугольнике
Внешняя высота в треугольнике
Остроугольный треугольник
Внешняя высота в треугольникеВнешняя высота в треугольникеВнешняя высота в треугольнике
Все высоты остроугольного треугольника лежат внутри треугольника.
Прямоугольный треугольник
Внешняя высота в треугольникеВнешняя высота в треугольникеВнешняя высота в треугольнике
Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника
Тупоугольный треугольник
Внешняя высота в треугольникеВнешняя высота в треугольникеВнешняя высота в треугольнике
Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Все высоты остроугольного треугольника лежат внутри треугольника.

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника

Видео:Высоты треугольника.Скачать

Высоты треугольника.

Ортоцентр треугольника

Теорема 1 . Высоты треугольника (или их продолжения) пересекаются в одной точке.

Доказательство . Рассмотрим произвольный треугольник ABC и проведём через каждую из его вершин прямую, параллельную противолежащей стороне (рис.3).

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Обозначим точки пересечения этих прямых символами A1 , B1 и C1 , как показано на рисунке 3.

Следовательно, точка B является серединой стороны C1A1 .

Следовательно, точка A является серединой стороны C1B1 .

Следовательно, точка C является серединой стороны B1A1 .

Внешняя высота в треугольнике

Внешняя высота в треугольнике

и в силу теоремы о серединных перпендикулярах пересекаются в одной точке.

Теорема 1 доказана.

Определение 2 . Точку пересечения высот треугольника (или их продолжений) называют ортоцентром треугольника.

У треугольников различных типов ортоцентры располагаются по-разному, как показано в следующей таблице.

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Расположение ортоцентров у треугольников различных типов

Ортоцентр остроугольного треугольника лежит внутри треугольника.

Ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Ортоцентр тупоугольного треугольника лежит вне треугольника.
В ортоцентре тупоугольного треугольника пересекаются не высоты, а продолжения высот треугольника.

Внешняя высота в треугольнике

Ортоцентр остроугольного треугольника лежит внутри треугольника.

Внешняя высота в треугольнике

Ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Ортоцентр тупоугольного треугольника лежит вне треугольника.
В ортоцентре тупоугольного треугольника пересекаются не высоты, а продолжения высот треугольника.

Видео:Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1

Ортоцентрический треугольник

Решим следующую задачу.

Задача . В остроугольном треугольнике ABC проведены высоты AD и BE (рис.5). Доказать, что треугольник DCE подобен треугольнику ABC .

Внешняя высота в треугольнике

Решение . Рассмотрим треугольники ADC и BEC . Эти треугольники подобны в силу признака подобия прямоугольных треугольников с равными острыми углами (угол C общий). Следовательно, справедливо равенство

Внешняя высота в треугольнике

Это равенство, а также наличие общего угла C позволяют на основании признака подобия треугольников заключить, что и треугольники DCE и ABC подобны. Решение задачи завершено.

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Определение 3 . Ортоцентрическим треугольником (ортотреугольником) называют треугольник, вершинами которого служат основания высот исходного треугольника (рис 6).

Внешняя высота в треугольнике

Из определения 3 и следствия 1 вытекает следствие 2.

Следствие 2 . Пусть FDE – ортоцентрический треугольник с вершинами в основаниях высот остроугольного треугольника ABC (рис 7).

Внешняя высота в треугольнике

Тогда справедливы равенства

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Из следствия 2 вытекает теорема 2.

Теорема 2 . Высоты остроугольного треугольника являются биссектрисами углов его ортоцентрического треугольника (рис.7).

Доказательство . Воспользовавшись следствием 2, получаем:

Внешняя высота в треугольнике

Внешняя высота в треугольнике

что и требовалось доказать.

Видео:17. Медианы, биссектрисы и высоты треугольникаСкачать

17. Медианы, биссектрисы и высоты треугольника

Задача Фаньяно

Задача Фаньяно . Рассматриваются всевозможные треугольники DEF , вершины D, E и F которых лежат на сторонах BC, AC и AB остроугольного треугольника ABC соответственно. Доказать, что из всех треугольников DEF наименьшим периметром обладает ортоцентрический треугольник треугольника ABC .

Решение . Пусть DEF – один из рассматриваемых треугольников. Обозначим символом D1 точку, симметричную точке D относительно прямой AC , и обозначим символом D2 точку, симметричную точке D относительно прямой AB (рис.8).

Внешняя высота в треугольнике

Поскольку отрезок прямой – кратчайшее расстояние между двумя точками, то периметр треугольника DEF оказывается не меньшим, чем длина отрезка D1D2 . Отсюда вытекает, что при фиксированной точке D наименьшим периметром обладает такой треугольник DEF , вершины F и E которого являются точками пересечения прямой D1D2 с прямыми AB и AC соответственно. Периметр этого треугольника равен длине отрезка D1D2 (рис.9).

Внешняя высота в треугольнике

Заметим также, что выполнено равенство

Кроме того, выполнено равенство

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Отсюда вытекает, что длина отрезка D1D2 будет наименьшей тогда, когда длина отрезка AD будет наименьшей, т.е. в том случае, когда отрезок AD является высотой треугольника ABC . Другими словами, наименьшим периметром обладает такой треугольник DEF , у которого вершина D является основанием высоты треугольника ABC , проведённой из вершины A , а вершины E и F построены по описанной выше схеме. Таким образом, среди всевозможных треугольников DEF треугольник с наименьшим периметром является единственным.

Если обозначить длину высоты, проведённой из вершины A , длину стороны AB и радиус описанной около треугольника ABC окружности буквами h, c и R соответственно, то, воспользовавшись теоремой синусов, получим:

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Следовательно, наименьший периметр рассматриваемых треугольников DEF равен

Внешняя высота в треугольнике

Теперь докажем, что ортоцентрический треугольник и является треугольником с наименьшим периметром. Для этого воспользуемся следующей леммой.

Лемма . Пусть DEF – ортоцентрический треугольник треугольника ABC (рис.10).

Внешняя высота в треугольнике

В этом случае отрезок D1D2 проходит через точки F и E .

Доказательство . Заметим, что в силу следствия 2 выполняются равенства:

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Кроме того, в силу равенства треугольников DFK и KFD2 , а также в силу равенства треугольников DEL и LED1 выполняются равенства:

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Внешняя высота в треугольнике

Внешняя высота в треугольнике

откуда вытекает, что углы AEF и D1EL , а также AFE и D2FK являются вертикальными углами. Это означает, что точки D1 , F, E , D2 лежат на одной прямой. Лемма доказана.

Доказательство леммы и завершает решение задачи Фаньяно.

Видео:Как найти высоту треугольникаСкачать

Как найти высоту треугольника

Треугольники общего вида

Видео:ВЫСОТА ТРЕУГОЛЬНИКА #shorts #математика #треугольник #высотатреугольника #геометрия #егэ #огэСкачать

ВЫСОТА ТРЕУГОЛЬНИКА #shorts #математика #треугольник #высотатреугольника #геометрия #егэ #огэ

Треугольники общего вида.

Основные свойства треугольников:

  1. Сумма всех углов в треугольнике равна $180°$.
  2. В равнобедренном треугольнике углы при основании равны.
  3. В равнобедренном треугольнике высота, проведенная к основанию, одновременно является медианой и биссектрисой.
  4. В равностороннем треугольнике все углы по $60°$.
  5. Внешний угол треугольника равен сумме двух углов, не смежных с ним.
  6. Средняя линия треугольника параллельна основанию и равна его половине.

$MN$ — средняя линия, так как соединяет середины соседних сторон.

Биссектриса — это линия, которая делит угол пополам.

  1. В равнобедренном треугольнике биссектриса, проведённая из вершины к основанию, является также и медианой, и высотой.
  2. Три биссектрисы в треугольнике пересекаются в одной точке, эта точка является центром вписанной в треугольник окружности.
  3. Биссектрисы смежных углов перпендикулярны.
  4. В треугольнике биссектриса угла делит противоположную сторону на отрезки, отношение которых такое же, как отношение сторон треугольника, между которыми эта биссектриса прошла.

Медиана — это линия, проведенная из вершины треугольника к середине противоположной стороны.

Свойства медиан:

1. Медиана делит треугольник на два равновеликих треугольника, т.е. на два треугольника, у которых площади равны.

2. Медианы пересекаются в одной точке и этой точкой делятся в отношении два к одному, считая от вершины.

3. В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы и радиусу описанной около этого треугольника окружности.

Высота в треугольнике — это линия, проведенная из вершины треугольника к противоположной стороне под углом в 90 градусов.

Свойства высот:

1. Три высоты (или их продолжения) пересекаются в одной точке.

2. Угол между высотами в остроугольном треугольнике равен углу между сторонами, к которым эти высоты проведены.

3. Высоты треугольника обратно пропорциональны его сторонам:

Прямоугольный треугольник и его свойства:

В прямоугольном треугольнике катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.

Некоторые свойства прямоугольного треугольника:

1. Сумма острых углов в прямоугольном треугольнике равна 90 градусов.

2. Катет прямоугольного треугольника, лежащий напротив угла в 30 градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)

3. Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности (R)

4. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями которых являются катеты данного треугольника.

5. В прямоугольном треугольнике радиус вписанной окружности равен: $r=/$ , где $а$ и $b$ – это катеты, $с$ – гипотенуза.

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.

  1. Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
  4. Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
  5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
  6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
  7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения

Значения тригонометрических функций некоторых углов:

ФигураРисунокОписание
Остроугольный треугольникВнешняя высота в треугольнике
Прямоугольный треугольникВнешняя высота в треугольнике
$α$$30$$45$$60$
$sinα$$/$$/$$/$
$cosα$$/$$/$$/$
$tgα$$/$$1$$√3$
$ctgα$$√3$$1$$/$

Тригонометрические тождества:

1. Основное тригонометрическое тождество:

2. Связь между тангенсом и косинусом одного и того же угла:

3. Связь между котангенсом и синусом одного и того же угла:

Подобие треугольников

Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.

Число $k$ — коэффициент подобия (показывает во сколько раз стороны одного треугольника больше сторон другого треугольника.)

  1. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$.
  2. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Признаки подобия треугольников:

  1. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
  2. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между ними равны, то такие треугольники подобны.
  3. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Теорема синусов

Во всяком треугольнике стороны относятся как синусы противолежащих углов:

В треугольнике $АВС ВС=16, sin∠A=/$. Найдите радиус окружности, описанной вокруг треугольника $АВС$.

Воспользуемся теоремой синусов:

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной окружности

Далее подставим числовые данные и найдем $R$

Теорема косинусов

Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

🌟 Видео

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

топовые факты про высоты треугольника, которые помогут на ЕГЭ #егэ2023 #математика #школа #fypСкачать

топовые факты про высоты треугольника, которые помогут на ЕГЭ #егэ2023 #математика #школа #fyp

В треугольнике известны две стороны и одна высота. Найти вторую высоту.Скачать

В треугольнике известны две стороны и одна высота.  Найти вторую высоту.

НАЙДИТЕ ВЫСОТУ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКАСкачать

НАЙДИТЕ ВЫСОТУ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКА

№492. Найдите высоты треугольника со сторонами 10 см, 10 см и 12 см.Скачать

№492. Найдите высоты треугольника со сторонами 10 см, 10 см и 12 см.

№499. Найдите меньшую высоту треугольника со сторонами, равными: а) 24 см, 25 см, 7 см; б) 15Скачать

№499. Найдите меньшую высоту треугольника со сторонами, равными: а) 24 см, 25 см, 7 см; б) 15

Медианы, биссектрисы и высоты треугольника | Геометрия 7-9 класс #18 | ИнфоурокСкачать

Медианы, биссектрисы и высоты треугольника | Геометрия 7-9 класс #18 | Инфоурок
Поделиться или сохранить к себе: