Треугольники бывают остроугольными, тупоугольными, прямоугольными, разносторонними, равносторонними, равнобедренными.
Определение 1. Треугольник называется остроугольным, если все ее углы острые, т.е. меньше 90° (Рис.1).
|  | 
Определение 2. Треугольник называется тупоугольным, если один из его углов тупой, т.е. больше 90° (Рис.2).
|  | 
Если треугольник тупоугольный, то исходя из того, что сумма всех углов треугольника равна 180°, остальные два угла треугольника будут острыми.
Определение 3. Треугольник называется прямоугольным, если один из его углов прямой, т.е. равен 90° (Рис.3).
|  | 
Если треугольник прямоугольный, то исходя из того, что сумма всех углов треугольника равна 180°, остальные два угла треугольника будут острыми.
Определение 4. Треугольник называется разносторонним, если длины всех сторон треугольника разные (Рис.4).
|  | 
Определение 5. Треугольник называется равносторонним или правильным, если длины всех сторон равны (Рис.5).
|  | 
Определение 6. Треугольник называется равнобедренным, если длины двух сторон равны (Рис.6).
|  | 
В равнобедренном треугольнике равные стороны называются боковыми сторонами треугольника, а третья сторона называется основанием.
- Теорема Пифагора
- Основные понятия
- Теорема Пифагора: доказательство
- Обратная теорема Пифагора: доказательство
- Решение задач
- Задание 1. Дан прямоугольный треугольник ABC. Его катеты равны 6 см и 8 см. Какое значение у гипотенузы?
- Задание 2. Является ли треугольник со сторонами 8 см, 9 см и 11 см прямоугольным?
- Виды треугольников
- Виды треугольников по углам
- Виды треугольников по сторонам
- 📺 Видео
Видео:Виды треугольниковСкачать

Теорема Пифагора
О чем эта статья:
Статья находится на проверке у методистов Skysmart. 
Если вы заметили ошибку, сообщите об этом в онлайн-чат 
(в правом нижнем углу экрана).
Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Основные понятия
Теорема Пифагора, определение: в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
Гипотенуза — сторона, лежащая напротив прямого угла.
Катет — одна из двух сторон, образующих прямой угол.
Формула Теоремы Пифагора выглядит так:
где a, b — катеты, с — гипотенуза.
Из этой формулы можно вывести следующее:
- a = √c 2 − b 2
- b = √c 2 − a 2
- c = √a 2 + b 2
Для треугольника со сторонами a, b и c, где c — большая сторона, действуют следующие правила:
- если c 2 2 + b 2 , значит угол, противолежащий стороне c, является острым.
- если c 2 = a 2 + b 2 , значит угол, противолежащий стороне c, является прямым.
- если c 2 > a 2 +b 2 , значит угол, противолежащий стороне c, является тупым.
| Записывайтесь на курсы обучения математике для школьников с 1 по 11 классы! | 
Видео:8 класс, 16 урок, Теорема ПифагораСкачать

Теорема Пифагора: доказательство
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Дано: ∆ABC, в котором ∠C = 90º.
Доказать: a 2 + b 2 = c 2 .
Пошаговое доказательство:
- Проведём высоту из вершины C на гипотенузу AB, основание обозначим буквой H.
- Прямоугольная фигура ∆ACH подобна ∆ABC по двум углам:
- Также прямоугольная фигура ∆CBH подобна ∆ABC:
- Введем новые обозначения: BC = a, AC = b, AB = c.
- Из подобия треугольников получим: a : c = HB : a, b : c = AH : b.
- Значит a 2 = c * HB, b 2 = c * AH.
- Сложим полученные равенства:
a 2 + b 2 = c * HB + c * AH
a 2 + b 2 = c * (HB + AH)
a 2 + b 2 = c * AB
Видео:ВСЕ ВИДЫ ТРЕУГОЛЬНИКОВ😉 #егэ #огэ #математика #профильныйегэ #shorts #геометрия #образованиеСкачать

Обратная теорема Пифагора: доказательство
Если сумма квадратов двух сторон треугольника равна квадрату третьей стороны, то такой треугольник является прямоугольным.
Дано: ∆ABC
Доказать: ∠C = 90º
Пошаговое доказательство:
- Построим прямой угол с вершиной в точке C₁.
- Отложим на его сторонах отрезки C₁A₁ = CA и C₁B₁ = CB.
- Проведём отрезок A₁B₁.
- Получилась фигура ∆A₁B₁C₁, в которой ∠C₁=90º.
- В этой фигуре ∆A₁B₁C₁ применим теорему Пифагора: A₁B₁ 2 = A₁C₁ 2 + B₁C₁ 2 .
- Таким образом получится:
- Значит, в фигурах треугольниках ∆ABC и ∆A₁B₁C₁:
- C₁A₁ = CA и C₁B₁ = CB по результату построения,
- A₁B₁ = AB по доказанному результату.
- Поэтому, ∆A₁B₁C₁ = ∆ABC по трем сторонам.
- Из равенства фигур следует равенство их углов: ∠C =∠C₁ = 90º.
Обратная теорема доказана.
Видео:Теорема Пифагора. 8 КЛАСС | Математика | TutorOnlineСкачать

Решение задач
Задание 1. Дан прямоугольный треугольник ABC. Его катеты равны 6 см и 8 см. Какое значение у гипотенузы?
Как решаем:
Пусть катеты a = 6 и b = 8.
По теореме Пифагора c 2 = a 2 + b 2 .
Подставим значения a и b в формулу: 
c 2 = 6 2 + 8 2 = 36 + 64 = 100 
c = √100 = 10.
Задание 2. Является ли треугольник со сторонами 8 см, 9 см и 11 см прямоугольным?
- Выберем наибольшую сторону и проверим, выполняется ли теорема Пифагора:
Ответ: треугольник не является прямоугольным.
Видео:Геометрия 7 класс (Урок№9 - Треугольник.)Скачать

Виды треугольников
Треугольники различаются между собой по характеру углов и по характеру сторон.
Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Виды треугольников по углам
- Остроугольный треугольник – это треугольник, у которого все углы острые, то есть меньше 90°.
- Прямоугольный треугольник – это треугольник, у которого один из углов является прямым, то есть равен 90°.
Стороны, образующие прямой угол называются катетами, а сторона, лежащая напротив прямого угла, называется гипотенузой.
Видео:Виды треугольниковСкачать

Виды треугольников по сторонам
- Разносторонний треугольник – это треугольник, у которого все стороны имеют разную длину.
- Равнобедренный треугольник – это треугольник, у которого две стороны равны между собой.
Равные стороны называются боковыми сторона треугольника, а третья сторона, не равная двум другим, называется его основанием.
📺 Видео
Виды треугольников. Построение треугольника | Математика 4 класс #38 | ИнфоурокСкачать

Геометрия 7 кл. Треугольники. Определение. Обозначение. Компоненты. Особенности. Виды треугольников.Скачать

Треугольники. 7 класс.Скачать

Виды треугольников. 6 классСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Задача по геометрии на прямоугольный треугольник и теорему Пифагора из реального ОГЭ по математикеСкачать

Теорема Пифагора для чайников)))Скачать

Edu: Сколькими способами можно доказать теорему Пифагора?Скачать

ЕГЭ 2024. ВСЁ ПРО ТРЕУГОЛЬНИКИ за 15 минутСкачать

Математика 6 класс. Треугольник. Виды треугольников. ЕГЭ, ОГЭ, ЦТ, экзаменСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

Виды треугольников. Видеоурок по геометрии 7 классСкачать


