С помощю этого онлайн калькулятора ромба можно найти неизвестные этлементы ромба по известным элементам. Для нахождения неизвестных элементов ромба, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть смотрите ниже.
Открыть онлайн калькулятор |
Видео:Равнобедренный треугольник. 7 класс.Скачать
Определение ромба
Определение 1. Ромб − это параллелограмм, у которого все стороны равны.
На рисунке 1 изображен ромб ABCD.
Определение 2. Ромб − это четырехугольник, у которого все стороны равны.
Ромб разделяет плоскость на две части, одна из которых называется внутренней областью ромба, а другая внешней областью ромба.
Объединение ромба и ограниченной им части плоскости также называют ромбом.
Видео:Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 классСкачать
Свойства ромба
Поскольку ромб является параллелограммом, то имеет следующие свойства:
- 1. У ромба противолежащие углы равны (( small angle A = angle C, ; angle B = angle D.) )
- 2. У ромба противолежащие стороны равны (( small AB = DC, ; BC=AD.) )
- 3. У ромба противолежащие стороны параллельны ( small( AB || DC, ; BC || AD).)
- 4. У ромба соседние углы дополняют друг друга до 180° ( small ( angle A +angle B=180°, ) ( small angle C + angle D=180°).)
- 5. Диагонали ромба точкой пересечения делятся пополам ( small ( AO = OC, ) ( small BO=OD).)
Ромб имеет также и следующие свойства:
- 6. Диагонали ромба пересекаются под прямым углом (( small AC perp BD.) )
- 7. Диагонали ромба являются биссектрисами его углов (( small angle ABD = angle CBD, ) ( small angle ADB = angle CDB, ) ( small angle DAC = angle BAC, ) ( small angle BCA = angle DCA. ))
- 8. В любой ромб можно вписать окружность, центр которой лежит на пересечении его диагоналей.
- 9. Сумма квадратов диагоналей ромба равна квадрату стороны, умноженная на четыре ( small (AC^2+BD^2=4AB^2). )
Докажем свойства 6 и 7, сформулировав следующую теорему:
Теорема 1. Диагонали ромба перпендикулярны и являются биссектрисами его углов.
Доказательство. По определению 1, ( small AD = DC ) (Рис.2). Следовательно треугольник ( small DAC ) равнобедренный. Тогда ( small angle DCO = angle DAO. ) Учитывая, что ( small AO = OC ) (свойство 5 ромба), получим, что треугольники ( small DOA ) и ( small DOC ) равны по двум сторонам и углу между ними (см. статью Треугольники. Признаки равенства треугольников). Тогда равны углы DOC и DOA. Но эти углы смежные и их сумма равна 180°. Следовательно ( small angle DOC= angle DOA=90°. ) То есть диагонали AC и BD перпендикулярны.
Из равенства треугольников ( small DOA ) и ( small DOC ) также следует, что ( small angle CDO= angle ADO,) следовательно BD является биссектрисой угла ADС, то есть BD является биссектрисой ромба ABCD.
Видео:Геометрия В ромб, который делится своей диагональю на два равносторонних треугольника, вписанаСкачать
Признаки ромба
Признак 1. Если смежные стороны параллелограмма равны, то этот параллелограмм − ромб.
Доказательство. Пусть смежные стороны параллелограмма ABCD равны. То есть имеем: AB=BC (Рис.3). У параллелограмма противоположные стороны равны (Свойство 1 статьи Параллелограмм). Тогда DC=AB=BC=AD. То есть все стороны параллелограмма равны и по определению 1, этот параллелограмм является ромбом.
Признак 2. Если диагонали параллелограмма перпендикулярны, то этот параллелограмм − ромб.
Доказательство. Пусть диагонали параллелограмма ABCD перпендикулярны (Рис.3). Рассмотрим прямоугольные треугольники AOB и COB. Так как у параллелограмма диагонали точкой пересечения разделяются пополам (Свойство 2 статьи Параллелограмм), то AO=OC. Тогда прямоугольные треугольники AOB и COB равны по двум катетам (AO=OC, BO общий катет (см. статью Прямоугольный треугольник. Свойства, признаки равенства)). Следовательно AB=BC. Тогда по признаку 1 этот параллелограмм является ромбом.
Признак 3. Если диагональ параллелограмма является биссектрисой его угла, то этот параллелограмм − ромб.
Доказательство. Пусть диагональ AC параллелограмма ABCD является биссектрисой угла BAD (Рис.4). Тогда ( small angle 1= angle 2 .) У параллелограмма ABCD ( small AB || DC .) Тогда для параллельных прямых AB и DC и секущей AC справедливо равенство ( small angle 1= angle 4 .) (см теорему 1 статьи Теоремы об углах, образованных двумя параллельными прямыми и секущей). Аналогично, для параллельных прямых BC и AD и секущей AC справедливо равенство ( small angle 2= angle 3 .) Так как ( small angle 1= angle 2 ,) то ( small angle 1= angle 2=angle 3= angle 4 .) Из ( small angle 1= angle 3) следует, что треугольник ABC равнобедренный (Признак 2 статьи Равнобедренный треугольник). Тогда AB=BC. У параллелограмма противоположные стороны равны (Свойство 1 статьи Параллелограмм). Тогда AB=BC=CD=DA. То есть все стороны параллелограмма равны и по определению 1, этот параллелограмм является ромбом.
Признак 4. Если стороны четырехугольника равны, то этот четырехугольник − ромб.
Доказательство. Пусть у четырехугольника все стороны равны. Тогда этот четырехугольник является параллелограммом (признак 2 статьи Параллелограмм). А по определению 1, этот параллелограмм является ромбом.
Видео:Равносторонний треугольник в ромбеСкачать
На стороне ромба построен равносторонний треугольник
На стороне ромба построен равносторонний треугольник. Отрезок, соединяющий точку пересечения диагоналей ромба с серединой стороны треугольника, составляет с ней угол 70 градусов. Найти острый угол ромба.
Пусть ABCD — ромб, треугольник BCF — равносторонний, M — середина FC, O — точка пересечения диагоналей ромба. По условию, ∠OMC=70°.
В треугольнике BMF проведём медиану BM. По свойству равностороннего треугольника BM является также его высотой, то есть BM ⊥ FC.
В четырёхугольнике BMCO ∠BOC=90° и ∠BMC=90°.
Так как диагонали ромба являются биссектрисами его углов, ∠BCD=2∠BCO=40°.
Если точка M — середина BC, то FM⊥BC и ∠OMC=∠BOF=90° (как вертикальные). Это случай не соответствует условию.
Точка M — середина отрезка FC по условию. Точка O — середина AC по свойству ромба. Следовательно, OM — средняя линия треугольника ACF.
По свойству средней линии треугольника MO || AF.
∠AFC=∠OMC=70° (как соответственные при MO || AF и секущей FC).
∠BFC=∠FCB=60° (как углы равностороннего треугольника).
∠BAF=∠AFB=10° (как углы при основании равнобедренного треугольника ABF).
По свойствам ромба ∠BAC=∠BCA=x°.
Из треугольника AFC по теореме о сумме углов треугольника
Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать
Ромб. Свойства и признаки ромба
Ромб – это параллелограмм, у которого все стороны равны.
Если у ромба – прямые углы, то он называется квадратом.
Видео:№405. В ромбе одна из диагоналей равна стороне. Найдите: а) углы ромба; б) углы,Скачать
Свойства ромба
1. Поскольку ромб – это параллелограмм, то все свойства параллелограмма верны для ромба.
Помимо этого:
2. Диагонали ромба перпендикулярны.
3. Диагонали ромба являются биссектрисами его углов.
4. Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4.
Видео:Задание 15 ОГЭ. Медиана равностороннего треугольникаСкачать
Признаки ромба
Чтобы параллелограмм оказался ромбом, необходимо выполнение одного из следующих условий:
1. Все стороны параллелограмма равны между собой ().
2. Диагонали пересекаются под прямым углом ().
3. Диагонали параллелограмма являются биссектрисами его углов.
Видео:8 класс, 8 урок, Ромб и квадратСкачать
Площадь ромба
Смотрите также таблицу-шпаргалку «Площади простейших фигур» здесь.
Чтобы не потерять страничку, вы можете сохранить ее у себя:
🎦 Видео
Геометрия Равносторонний треугольникСкачать
Скалярное произведение векторов. 9 класс.Скачать
Равносторонний треугольник в окружностиСкачать
Площадь ромба. Легче понять...Скачать
Вебинар 20.01.2024 «Организм человека тонкие плотные и срединные тела»Скачать
Ромб, признаки. 8 класс.Скачать
Геометрия 8. Урок 4 - Прямоугольник, ромб, квадрат - свойства и признаки.Скачать
Почему углы при основании равны в равнобедренном треугольникеСкачать
Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать
Самый короткий тест на интеллект Задача Массачусетского профессораСкачать
Формулы равностороннего треугольника #shortsСкачать
Задача про ромб по геометрииСкачать