Центральная симметрия треугольника авс

Осевая и центральная симметрия

Центральная симметрия треугольника авс

О чем эта статья:

Видео:Осевая симметрия. 6 класс.Скачать

Осевая симметрия. 6 класс.

Что такое симметрия

Симметрия — это соразмерность, пропорциональность частей чего-либо, расположенных по обе стороны от центра. Говоря проще, если обе части от центра одинаковы, то это симметрия.

Ось симметрии фигуры — это прямая, которая делит фигуру на две симметричные части. Чтобы наглядно понять, что такое ось симметрии, внимательно рассмотрите рисунок.

Центральная симметрия треугольника авс

Центр симметрии — это точка, в которой пересекаются все оси симметрии.

Вернемся к рисунку: на нем мы видим фигуры, имеющие ось и центр симметрии.

Рассмотрите фигуры с осевой и центральной симметрией.

  • Ось симметрии угла — биссектриса.
  • Ось симметрии равностороннего треугольника — биссектриса, медиана, высота.
  • Оси симметрии прямоугольника проходят через середины его сторон.
  • У ромба две оси симметрии — прямые, содержащие его диагонали.
  • У квадрата 4 оси симметрии, так как он сразу и квадрат, и ромб.
  • Ось симметрии окружности — любая прямая, проведенная через ее центр.

Центральная симметрия треугольника авс

Витрувианский человек да Винчи — хрестоматийный пример симметрии. Принято считать, что, чем предмет симметричнее, тем он красивее. Хотя, по секрету, в природе нет ничего абсолютно симметричного, так уж задумано. Вся идеальная симметрия — дело рук человека.

Видео:Центральная симметрияСкачать

Центральная симметрия

Осевая симметрия

Вот как звучит определение осевой симметрии:

Осевой симметрией называется симметрия, проведенная относительно прямой. При осевой симметрии любой точке, расположенной по одну сторону прямой, всегда соответствует другая точка на второй стороне этой прямой.

При этом отрезки, соединяющие эти точки, перпендикулярны оси симметрии.

Осевая симметрия часто встречается в повседневной жизни. К сожалению, не на фото в паспорте и не в стрелках на глазах. Но её вполне себе можно встретить в половинках авокадо, на морде кота или в зданиях вокруг. Осевая симметрия — неотъемлемая часть архитектуры. Оглядитесь и поищите примеры осевой симметрии вокруг вас.

Центральная симметрия треугольника авс

В геометрии есть фигуры, обладающие осевой симметрией: квадрат, треугольник, ромб, прямоугольник.

Давайте разберемся, как построить фигуру, симметричную данной относительно прямой.

Пример 1. Постройте треугольник A1B1C1 ,симметричный треугольнику ABC относительно прямой.

Центральная симметрия треугольника авс

  1. Проведем из вершин треугольника ABC три прямые, перпендикулярные оси симметрии, выведем эти прямые на другую сторону оси симметрии.
  2. Найдем расстояние от вершин треугольника ABC до точек на оси симметрии.
  3. С другой стороны прямой отложим такие же расстояния.
  4. Соединяем точки отрезками и строим треугольник A1B1C1, симметричный треугольнику ABC.
  5. Получаем два треугольника, симметричных относительно оси симметрии.

Пример 2. Постройте треугольник, симметричный треугольнику ABC относительно прямой d.

Центральная симметрия треугольника авс

  1. Строим по уже известному алгоритму. Проводим прямые, перпендикулярные прямой d, из вершин треугольника ABC и выводим их на другую сторону оси симметрии.
  2. Измеряем расстояние от вершин до точек на прямой.
  3. Откладываем такие же расстояния на другой стороне оси симметрии.
  4. Соединяем точки и строим треугольник A1B1C1.

Пример 3. Построить отрезок A1B1, симметричный отрезку AB относительно прямой l.

Центральная симметрия треугольника авс

  1. Проводим через точку А прямую, перпендикулярную прямой l.
  2. Проводим через точку В прямую, перпендикулярную прямой l.
  3. Измеряем расстояния от точек А и В до прямой l.
  4. Откладываем такое же расстояние на перпендикулярных прямых от прямой l по другую сторону и ставим точки A1 и B1.
  5. Соединяем точки A1 и B1.

Больше примеров и увлекательных заданий — на курсах по математике в онлайн-школе Skysmart!

Видео:Центральная симметрия. 6 класс.Скачать

Центральная симметрия. 6 класс.

Центральная симметрия

Теперь поговорим о центральной симметрии — вот ее определение:

Центральной симметрией называется симметрия относительно точки.

Фигуры с центральной симметрией, как и фигуры с осевой симметрией, окружают нас повсюду. Центральную симметрию можно заметить в живой природе, в разрезе фруктов и в цветах.

Центральная симметрия треугольника авс

Давайте разберемся, как построить центральную симметрию и рассмотрим алгоритм построения фигур с центральной симметрией.

Пример 1: Постройте треугольник A1B1C1 ,симметричный треугольнику ABC, относительно центра (точки О).

Центральная симметрия треугольника авс

  1. Соединяем точки ABC c центром и выводим эти прямые на другую сторону оси.
  2. Измеряем отрезки AO, BO, CO и откладываем равные им отрезки с другой стороны от центра (точки О).
  3. Получившиеся точки соединяем отрезками A1B1 A1C1 B1C1.
  4. Получаем треугольник A1B1C1, симметричный треугольнику ABC, относительно центра.

Пример 2. Построить отрезок A1B1, симметричный отрезку AB относительно центра (точки О).

Центральная симметрия треугольника авс

  1. Измеряем расстояние от точки B до точки О и от точки А до точки О.
  2. Проводим прямую из точки А через точку О и выводим ее на другую сторону.
  3. Проводим прямую из точки B через точку О и выводим ее на другую сторону.
  4. Чертим на противоположной стороне отрезки А1О и B1О, равные отрезкам АО и АB.
  5. Соединяем точки A1 и B1 и получаем отрезок A1B1, симметричный данному.

Видео:ВПР 6 класс. 12 задание. Фигура симметиичная данной относительно оси.Скачать

ВПР 6 класс. 12 задание. Фигура симметиичная данной относительно оси.

Задачи на самопроверку

В 8 классе геометрия — сплошная симметрия: центральная, осевая, зеркальная да какая угодно. Чтобы во всем этом не поплыть, больше тренируйтесь. Чертите и приглядывайтесь, угадывайте вид симметрии и решайте больше задачек. Вот несколько упражнений для тренировки. Мы в вас очень верим!

Задачка 1. Рассмотрите симметричные геометрические рисунки и назовите вид симметрии.

Мы рассмотрели примеры осевой и центральной симметрии и знаем, что:

Симметрия относительно прямой — осевая
Симметрия относительно точки — центральная

Центральная симметрия треугольника авс

Задачка 2. Пусть M и N какие-либо точки, l — ось симметрии. М1 и N1 — точки,
симметричные точкам M и N относительно прямой l. Докажите, что MN = М1N1.

Центральная симметрия треугольника авс

Подсказка: опустите перпендикуляры из точек N и N1 на прямую MМ1.

Задачка 3. Постройте фигуру, симметричную данной относительно прямой a.

Видео:Геометрия 8 класс (Урок№7 - Осевая и центральная симметрия.)Скачать

Геометрия 8 класс (Урок№7 - Осевая и центральная симметрия.)

Центральная симметрия

Центральная симметрия — это симметрия относительно точки.

Центральная симметрия треугольника авсПусть дана некоторая точка O. Чтобы построить точку, симметричную относительно точки O некоторой точке A, надо:

Центральная симметрия треугольника авс1) Провести луч AO.

2) С другой стороны от точки O на луче AO отложить отрезок OA1, равный отрезку AO.

Полученная точка A1 симметрична точке A относительно точки O.

Точка O называется центром симметрии.

Таким образом, точки A и A1симметричны относительно точки O, если O — середина отрезка AA1. Точка O считается симметричной самой себе.

Преобразование фигуры F в фигуру F1, при котором каждая точка A фигуры F переходит в точку A1, симметричную относительно данной точки O, называется преобразованием симметрии относительно точки O. Фигуры F и F1 называются фигурами, симметричными относительно точки O.

Центральная симметрия треугольника авсЧтобы построить треугольник, симметричный треугольнику ABC относительно точки O, достаточно построить точки A1, B1 и C1, симметричные точкам A, B и C относительно точки O, и соединить их отрезками.

Треугольники ABC и A1B1C1 симметричны относительно точки O.

Если преобразование симметрии относительно точки O переводит фигуру в себя, то такая фигура называется центрально-симметричной, а точка O называется центром симметрии этой фигуры.

Примеры центрально-симметричных фигур:

Центральная симметрия треугольника авс1) Параллелограмм.

Центр симметрии параллелограмма — точка пересечения его диагоналей.

Центральная симметрия треугольника авс

Центр симметрии окружности — её центр.

Центральная симметрия треугольника авс3) Прямая.

Центром симметрии прямой является любая точка этой прямой ( то есть прямая имеет бесконечное множество центров симметрии).

Преобразование симметрии относительно точки является движением.

Видео:Осевая и центральная симметрия, 6 классСкачать

Осевая и центральная симметрия, 6 класс

Центральная симметрия — понятие, свойства и примеры фигур

Центральная симметрия – самая интересная и познавательная тема в геометрии, которую изучают в начальных классах школы и более тщательно — в 8 — 11 классах. Знания по этой теме обязательно пригодятся ученику в жизни.

Видео:Осевая симметрия, как начертить треугольники симметричноСкачать

Осевая симметрия, как начертить треугольники симметрично

Что такое центральная симметрия

Начнём с определения: центральная симметрия — одно из свойств определённой геометрической фигуры, при котором точке В соответствует некая точка В1, находящая в таком же пространственном положении относительно точки С. Точка С лежит на середине отрезка ВВ1. Точка С называется центром симметрии. Это определение соответствует курсу планиметрии.

Центральная симметрия треугольника авс

Центральную симметрию можно построить и в пространстве. В пространстве центральной симметрией называется словно зеркальное отображение какой-либо геометрической фигуры. Она представляет собой две одинаковые фигуры, соответственные точки которых попарно симметричны относительно точки пространства О.

Видео:8 класс, 9 урок, Осевая и центральная симметрияСкачать

8 класс, 9 урок, Осевая и центральная симметрия

Свойства центральной симметрии

Основные свойства следующие:

1. Центральную симметрию называют движением, при котором соответствующие точки также остаются симметричными, то есть расстояние между ними остаётся прежним.

Посмотрим на рисунок. Треугольники АВС и А1В1С1 симметричны в пространстве относительно точки О. При каком либо преобразовании пространства сохраняются условия: АО=А1О, ВО=В1О, СО=С1О. Значит, картинка остаётся той же.

Центральная симметрия треугольника авс

Однако если представить геометрическую фигуру в виде векторов, то при преобразовании пространства эти векторы поменяют свои направления;

2. Центральная симметрия имеет только одну центральную точку, которая является неподвижной при преобразовании пространства;

3. Если прямая проходит через центр симметрии, то она соответствует самой себе, то есть симметрична;

4. Центральная симметрия переводит прямую, не проходящую через центр симметрии, в параллельную ей прямую.

Доказывается это свойство достаточно просто. Для этого нужно построить две параллельные прямые АВ и А1В1 относительно точки О.

Центральная симметрия треугольника авс

Далее соединяем симметричные точки и получаем отрезки АА1 и ВВ1. Далее легко заметить, что отрезки АО и А1О будут равны. Соответственно равны и отрезки ВО и В1О. Углы, которые образуются при пересечении двумя прямыми точки О также равны.

Значит, треугольники равны по двум сторонам и углу между ними. Следовательно, равны углы А,А1 и В,В1. Значит они являются накрест лежащими при секущих АА1 и ВВ1. Задача решена, АВ и А1В1 параллельны;

5. При центральной симметрии отрезки симметричны отрезкам, лучи симметричны лучам, прямые симметричны прямым.

Видео:Геометрия 8 Осевая и центральная симметрияСкачать

Геометрия 8 Осевая и центральная симметрия

Примеры фигур, обладающих центральной симметрией

Центральная симметрия треугольника авс

Фигур, как имеющих углы, так и без углов, но при этом обладающих центральной симметрией не так уж мало:

различные правильные многоугольники.

Видео:Осевая и центральная симметрия.Скачать

Осевая и центральная симметрия.

Интересные факты о центральной симметрии

Вся окружающая нас природа – сплошная центральная симметрия. Многие растения и насекомые обладают центральной симметрией.

Центральная симметрия треугольника авс

Практически у каждого фрукта есть своя симметрия. Например, кокос в разрезе представляет собой окружность с центром в некоторой точке.

Ещё один очевидный пример – бабочка.

Центральная симметрия треугольника авс

Великолепные узоры на её крылышках – четкая и яркая симметрия.

Каждый знает, что видовое разнообразие морских ракушек бесконечно. Наверняка, вы сможете найти несколько как с осевой, так и центральной симметрией.

Великолепные примеры с элементами центральной симметрии можно наблюдать и в архитектуре. Потолки различных храмов и церквей украшаются орнаментами, основой которых является центральная симметрия.

Центральная симметрия треугольника авс

Собор Парижской Богоматери имеет прекрасный, утончённый узор, основанный на центральной симметрии.

Рукодельницы в своих произведениях искусства применяют симметрию, которая заметна в удивительных и затейливых узорах.

Таким образом, центральная симметрия – основа, которая составляет природу, архитектуру и даже иногда музыку. Именно это проявление так радует человеческий глаз при появлении первых снежинок или при знакомстве с сооружениями архитектуры.

📹 Видео

Центральная и осевая симметрии. Геометрия 7 класс.Скачать

Центральная и осевая симметрии.  Геометрия 7 класс.

Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Итальянская партия (чёрными) 3 часть. Симметричный вариант. Для 1-2 разряда.Скачать

Итальянская партия (чёрными) 3 часть. Симметричный вариант. Для 1-2 разряда.

Осевая и центральная симметрии. 6 класс.Скачать

Осевая и центральная симметрии. 6 класс.

11 класс, 9 урок, Центральная симметрияСкачать

11 класс, 9 урок, Центральная симметрия

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

СИММЕТРИЯ | осевая симметрия | центральная симметрияСкачать

СИММЕТРИЯ | осевая симметрия | центральная симметрия

Осевая симметрия. Центральная симметрия. Практическая часть. 6 класс.Скачать

Осевая симметрия. Центральная симметрия. Практическая часть. 6 класс.

6 класс, 26 урок, СимметрияСкачать

6 класс, 26 урок, Симметрия

Симметрия относительно точки (центральная симметрия). Пример 2Скачать

Симметрия относительно точки (центральная симметрия). Пример 2
Поделиться или сохранить к себе: