Треугольник в сечении куба

Узнать ещё

Знание — сила. Познавательная информация

Видео:Треугольник в сечении кубаСкачать

Треугольник в сечении куба

Сечение куба плоскостью

Задачи на построение сечений куба плоскостью, как правило, проще чем, например, задачи на сечения пирамиды.

Провести прямую можем через две точки, если они лежат в одной плоскости. При построении сечений куба возможен еще один вариант построения следа секущей плоскости. Поскольку две параллельные плоскости третья плоскость пересекает по параллельным прямым, то, если в одной из граней уже построена прямая, а в другой есть точка, через которую проходит сечение, то можем провести через эту точку прямую, параллельную данной.

Рассмотрим на конкретных примерах, как построить сечения куба плоскостью.

1) Построить сечение куба плоскостью, проходящей через точки A, C и M.

Треугольник в сечении куба

Задачи такого вида — самые простые из всех задач на построение сечений куба. Поскольку точки A и C лежат в одной плоскости (ABC), то через них можем провести прямую. Ее след — отрезок AC. Он невидим, поэтому изображаем AC штрихом. Аналогично соединяем точки M и C, лежащие в одной плоскости (CDD1), и точки A и M, которые лежат в одной плоскости (ADD1). Треугольник ACM — искомое сечение.

Треугольник в сечении куба

2) Построить сечение куба плоскостью, проходящей через точки M, N, P.

Здесь только точки M и N лежат в одной плоскости (ADD1), поэтому проводим через них прямую и получаем след MN (невидимый). Поскольку противолежащие грани куба лежат в параллельных плоскостях, то секущая плоскость пересекает параллельные плоскости (ADD1) и (BCC1) по параллельным прямым. Одну из параллельных прямых мы уже построили — это MN.

Треугольник в сечении кубаЧерез точку P проводим прямую, параллельную MN. Она пересекает ребро BB1 в точке S. PS — след секущей плоскости в грани (BCC1).

Проводим прямую через точки M и S, лежащие в одной плоскости (ABB1). Получили след MS (видимый).

Плоскости (ABB1) и (CDD1) параллельны. В плоскости (ABB1) уже есть прямая MS, поэтому через точку N в плоскости (CDD1) проводим прямую, параллельную MS. Эта прямая пересекает ребро D1C1 в точке L. Ее след — NL (невидимый). Точки P и L лежат в одной плоскости (A1B1C1), поэтому проводим через них прямую.

Пятиугольник MNLPS — искомое сечение.

3) Построить сечение куба плоскостью, проходящей через точки M, N, P.

Треугольник в сечении куба

Точки M и N лежат в одной плоскости (ВСС1), поэтому через них можно провести прямую. Получаем след MN (видимый). Плоскость (BCC1) параллельна плоскости (ADD1),поэтому через точку P, лежащую в (ADD1), проводим прямую, параллельную MN. Она пересекает ребро AD в точке E. Получили след PE (невидимый).

Треугольник в сечении куба

Больше нет точек, лежащей в одной плоскости, или прямой и точки в параллельных плоскостях. Поэтому надо продолжить одну из уже имеющихся прямых, чтобы получить дополнительную точку.

Если продолжать прямую MN, то, поскольку она лежит в плоскости (BCC1), нужно искать точку пересечения MN с одной из прямых этой плоскости. С CC1 и B1C1 точки пересечения уже есть — это M и N. Остаются прямые BC и BB1. Продолжим BC и MN до пересечения в точке K. Точка K лежит на прямой BC, значит, она принадлежит плоскости (ABC), поэтому через нее и точку E, лежащую в этой плоскости, можем провести прямую. Она пересекает ребро CD в точке H. EH -ее след (невидимый). Поскольку H и N лежат в одной плоскости (CDD1), через них можно провести прямую. Получаем след HN (невидимый).

Плоскости (ABC) и (A1B1C1) параллельны. В одной из них есть прямая EH, в другой — точка M. Можем провести через M прямую, параллельную EH. Получаем след MF (видимый). Проводим прямую через точки M и F.

Шестиугольник MNHEPF — искомое сечение.

Треугольник в сечении куба

Если бы мы продолжили прямую MN до пересечения с другой прямой плоскости (BCC1), с BB1, то получили бы точку G, принадлежащую плоскости (ABB1). А значит, через G и P можно провести прямую, след которой PF. Далее — проводим прямые через точки, лежащие в параллельных плоскостях, и приходим к тому же результату.

Работа с прямой PE дает то же сечение MNHEPF.

4) Построить сечение куба плоскостью, проходящей через точку M, N, P.

Треугольник в сечении кубаЗдесь можем провести прямую через точки M и N, лежащие в одной плоскости (A1B1C1). Ее след — MN (видимый). Больше нет точек, лежащих в одной плоскости либо в параллельных плоскостях.

Треугольник в сечении кубаПродолжим прямую MN. Она лежит в плоскости (A1B1C1), поэтому пересечься может только с одной из прямых этой плоскости. С A1D1 и C1D1 точки пересечения уже есть — N и M. Еще две прямые этой плоскости — A1B1 и B1C1. Точка пересечения A1B1 и MN — S. Поскольку она лежит на прямой A1B1, то принадлежит плоскости ( ABB1), а значит, через нее и точку P, лежащую в этой же плоскости, можно провести прямую. Прямая PS пересекает ребро AA1 в точке E. PE — ее след (видимый). Через точки N и E, лежащие в одной плоскости (ADD1), можно провести прямую, след которой — NE (невидимый). В плоскости (ADD1) есть прямая NE, в параллельной ей плоскости (BCC1) — точка P. Через точку P можем провести прямую PL, параллельную NE. Она пересекает ребро CC1 в точке L. PL — след этой прямой (видимый). Точки M и L лежат в одной плоскости (CDD1), значит, через них можно провести прямую. Ее след — ML (невидимый). Пятиугольник MLPEN — искомое сечение.

Треугольник в сечении кубаМожно было продолжать прямую NM в обе стороны и искать ее точки пересечения не только с прямой A1B1, но и с прямой B1C1, также лежащей в плоскости (A1B1C1). В этом случае через точку P проводим сразу две прямые: одну — в плоскости (ABB1) через точки P и S, а вторую — в плоскости (BCC1), через точки P и R. После чего остается соединить лежащие в одной плоскости точки: M c L, E — с N.

Видео:Построение сечения куба по трем точкамСкачать

Построение сечения куба по трем точкам

«Сечение куба плоскостью и практическое их применение в задачах».

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Развитие управляющих функций мозга ребёнка: полезные советы и упражнения для педагогов

Сертификат и скидка на обучение каждому участнику

Общеобразовательная школа І-ІІІ ступеней №2

отдела образования администрации города Кировское

«Сечение куба плоскостью

и практическое их применение в задачах».

Подготовила учитель математики

Задачи на построение сечений многогранников занимают значительное место как школьном курсе геометрии для старших классов, так и на экзаменах разного уровня. Решение этого вида задач способствует усвоению аксиом стереометрии, систематизации знаний и умений, развитию пространственного представления и конструктивных навыков. Общеизвестны трудности, возникающие при решении задач на построение сечений.

Основными действиями, составляющими метод построения сечений, являются нахождение точки пересечения прямой с плоскостью, построение линий пересечения двух плоскостей, построение прямой параллельной плоскости, построение прямой перпендикулярной плоскости.

Проиллюстрирую построение сечения на одной задаче из школьного курса математики:

Треугольник в сечении куба

Решение: Построим два требуемых сечения, взяв точку М1 ближе к точке В, а точку М2 ближе к В1. Оба сечения показаны на рисунке .В начале движения когда точка М1только отошла от точки В1, сечение представляет собой треугольник с основанием АС и высотой М1О, которая чуть больше отрезка ВО, т.е. Треугольник в сечении куба Если точка М1 займёт положение М2 расположенной очень близко к точке В1, то Треугольник в сечении кубаАМ2С почти совпадёт с Треугольник в сечении кубаАВ1С, а его высота М1О – с отрезком В1О, длина которого равна Треугольник в сечении куба (ОВ1=Треугольник в сечении куба=Треугольник в сечении куба).

Отсюда по соображениям непрерывности делаем вывод: Треугольник в сечении куба

Особо следует посмотреть, что произойдёт, если точка М1 займёт положение вершины В.

2. Построить сечение куба плоскостью, проходящей через три точки А1, E и L , лежащие на рёбрах куба.

Треугольник в сечении куба

Плоскости граней A 1 ADD 1 и DD 1 C 1 C пересекаются по прямой DD 1, а плоскости граней A 1 B 1 C 1 D 1 u DD 1 C 1 C – по прямой D 1 C 1. Соединив точки А и Е , получим прямую пересечения секущей плоскости с плоскостью грани AA 1 D 1 D , а продолжив её, найдём точку N , принадлежащую трём плоскостям: плоскости сечения и плоскостям граней AA 1 D 1 D u DD 1 C 1 C .

Аналогично найдём точку М, общую трём плоскостям: плоскости сечения и плоскостям граней A 1 B 1 C 1 D 1 u DD 1 C 1 C . Таким образом, точки N u M принадлежат секущей плоскости и плоскости DD 1 C 1 C ; прямая MN – линия пересечения плоскости сечения с плоскостью грани DD 1 C 1 C , а F и K – точки пересечения её с рёбрами куба CD u CC 1. Последовательно соединив прямыми точки A 1, E , F , K u L , получаем пятиугольник A ! EFKL , который и даст нам искомое сечение.

Треугольник в сечении кубаТреугольник в сечении куба

Треугольник в сечении кубаТреугольник в сечении куба

Треугольник в сечении кубаТреугольник в сечении куба

Треугольник в сечении кубаТреугольник в сечении куба

При построении сечения куба плоскостью Х при произвольном расположении точек в сечении получается: треугольник, трапеция, прямоугольник, пятиугольник или шестиугольник. Естественно возник вопрос, как вид сечения зависит от вида расположения точек задающих это сечение

Я решил провести исследование, цель которого является выяснение.

Построить сечения куба плоскостью, когда заданы три точки принадлежащие рёбрам с одной вершиной.

Треугольник в сечении куба

Треугольник в сечении куба

Треугольник в сечении куба

Взяты три точки A 1, D , C 1, которые принадлежат вершине D 1, а сами являются вершинами куба.

В сечении получился равносторонний треугольник, так как A 1 C 1, A 1 D u DC 1 – диагонали граней этого куба.

Три точки: A 1 u C 1 – вершины куба, а точка F принадлежит ребру куба DD 1. Точки принадлежат прямым выходящим из вершины D 1.

В сечении получился равнобедренный треугольник, так как F равноудалена от точек A 1 u C 1.

Три точки: A 1 u C 1 – вершины куба, а точка F принадлежит прямой ребра куба DD 1. Точки принадлежат прямым выходящим из одной вершины D 1.

В сечении получается равнобедренная трапеция, так как F равноудалена от точек A 1 u C 1, то есть LA 1= KC 1.

Треугольник в сечении куба

Треугольник в сечении куба

Треугольник в сечении куба

Три точки принадлежащие рёбрам с одной вершиной D 1. Точки F u M принадлежат продолжениям рёбер D 1 D u D 1 C соответственно, а точка A 1 является вершиной куба.

В сечении получился пятиугольник A 1 KLNG .

Взяты три точки F , M u Q так, что лежат на продолжении рёбер D 1 D , D 1 C 1, и D 1 A 1 соответственно.

В сечении получился шестиугольник KLNGJH .

Три точки лежат на рёбрах с одной вершиной D 1.

В сечении получился произвольный треугольник, но если точки расположить так чтобы D 1 Q = D 1 M = D 1 F , то есть если они были бы равноудалены от вершины D 1 то в сечении получился бы равносторонний треугольник.

Треугольник в сечении куба

Треугольник в сечении куба

Секущая плоскость задана точками Н, Q и M . В сечении получается параллелограмм, так как KC ││ MP и MK ││ PC по теореме о пересечении двух параллельных плоскостей третьей.

Треугольник в сечении куба

Если точки H , Q и M , задают секущую плоскость, удаленные от D , на расстоянии 2 a , где а – для ребра куба, то в сечении получается правильный треугольник ACB 1.

Вывод: три задающих сечение точки принадлежат трём рёбрам куба с общей вершиной или являются их продолжением, то в сечении получается: треугольник, пятиугольник, шестиугольник трапеция, параллелограмм.

Построение сечения куба плоскостью, когда заданы три точки, две из которых лежат на смежных рёбрах, а третья точка лежит на ребре не смежном с ними.

Треугольник в сечении куба

Треугольник в сечении куба

Три точки M , K u F , взяты так что M u F принадлежат рёбрам с одной вершиной A 1, а точка K лежит на ребре не смежным с ними.

В сечении получается прямоугольник, так как А1М= D 1 K и по теореме о трёх перпендикулярах можно доказать что MKLF – прямоугольник., а если А1М Треугольник в сечении кубаD 1 K , то может получится трапеция или пятиугольник.

Треугольник в сечении куба

Треугольник в сечении куба

Треугольник в сечении куба

Взяты три точки так, что K u L принадлежат рёбрам выходящим из одной вершины A 1, а точка N принадлежит ребру CC 1, не смежному сними. K , L u N середины рёбер A 1 A , A 1 B 1 u CC 1 – соответственно.

В сечении получается правильный шестиугольник KLGNHM

Взяты три точки так, что K u L принадлежат рёбрам выходящим из одной вершины A 1, а точка T принадлежит ребру DC .

В сечении получается шестиугольник KLFRTZ .

Треугольник в сечении куба

Треугольник в сечении куба

Три точки взяты так, что K u L принадлежат рёбрам куба с одной вершины A 1, а точка M ребре DD 1.

В сечении получается трапеция LKQM .

Три точки K u L которые принадлежат рёбрам с одной вершиной A 1.и точка R которая лежит на ребре BC .

В сечении получается пятиугольник KLFRT .

Вывод: Если секущая плоскость задана тремя точками, две из которых лежат на смежных рёбрах, а третья на ребре не смежном с ними, то в сечении может получиться прямоугольник, пятиугольник, шестиугольник, трапеция.

В сечении куба параллелограмм и его частные случаи.

Треугольник в сечении куба

Треугольник в сечении куба

Треугольник в сечении куба

Треугольник в сечении куба

Точки T , H , J задающие сечение расположены так, что THТреугольник в сечении кубаAD , HJТреугольник в сечении кубаAD . В сечении получается квадрат HTKJ .

Сечение задано точками C , F , L , причём DF = FD 1, BL = LB 1. В сечении получается ромб AFCL .

Сечение задано точками C , G , H . B 1 H = DG . В сечении параллелограмм A 1 GCH.

Точки задающие сечение являются вершинами куба A , D , C 1. В сечении получается прямоугольник

В сечении куба правильные многоугольники

Треугольник в сечении куба

Треугольник в сечении куба

Треугольник в сечении куба

Треугольник в сечении куба

Треугольник АВВ1 равносторонний, так как его стороны это диагонали граней куба.

Треугольник КМТ равносторонний, так как КВ=МВ=ТВ.

КМТЕ – квадрат, так как сечение задано точками М, К, Е и МК Треугольник в сечении кубаAD , EKТреугольник в сечении кубаAD .

В сечении правильный шестиугольник КМТНЕО, так как точки Н, Е, К задающие сечение являются серединами рёбер СС1, DC , АА1 соответственно.

Куб и несколько задач по стереометрии с ЕГЭ.

В пособии “ЕГЭ 2005. Математика. Типовые тестовые задачи” (Корникова Т. А. и др.) Содержит 10 задач (С4) по стереометрии, объединенных общей идеей: дана треугольная призма АВСА 1 В 1 С 1 стороны основания АВ и ВС взаимно перпендикулярны и перпендикулярны ребру ВВ 1 , АВ=ВС=ВВ 1 , вершина А является вершиной конуса (или центром одного из оснований цилиндра, или центром сферы), основание конуса (сфера или второе основание цилиндра) проходит через середину одного ребра призмы, длина его известна. Надо найти объем или поверхность конуса (сферы, цилиндра). Треугольник в сечении куба

Общий пример решения:

Данную призму дополнить до куба. Шестиугольник DEFKLM – сечение куба плоскостью основания конуса , окружность которого проходит через середину А1В1, А – вершина конуса, или

Треугольник в сечении куба

DEFKLM – сечение куба плоскостью основания цилиндра, окружность которого проходит через середину А1В1, А – центр второго основания цилиндра, или это сечение куба плоскостью большого круга сферы с центром А, сфера которого проходит через середину А1В1.

Шестиугольник DEFKLM – сечение куба плоскостью, проходящей через середину рёбер А 1 В 1 , ВВ 1 , ВСЖ при построении получаются точки K , L , M , которые являются серединами соответствующих рёбер. Стороны этого шестиугольника являются гипотенузами треугольников DB 1 E , EBF , FCK , KQL , LRM , MA 1 D , катеты которых равны половине ребра куба. Тогда центр этого шестиугольника является центром описанной около него окружности, которая пересекает рёбра куба в точках D , E , F , K , L и М, радиус этой окружности Треугольник в сечении куба, где А 1 В 1 = а .

AO Треугольник в сечении кубаEL, т . к . Треугольник в сечении кубаEAL – равнобедренный: AL = AE .

( Треугольник в сечении кубаABE u Треугольник в сечении кубаEAL – прямоугольные, AB = AQ = а, BE = LQ = Треугольник в сечении куба )

EO = OL как середина диагонали Е L шестиугольника DEFKLM , т. е. АО – медиана ,а по свойствам равнобедренного треугольника и высота. Аналогично доказывается АО Треугольник в сечении кубаDK . Так как АО перпендикулярна к двум пересекающимся прямым плоскости шестиугольника, то АО перпендикулярна ко всей плоскости.

Если А – вершина конуса то АО – его высота, если А – центр второго основания цилиндра, то АО- высота цилиндра.

Треугольник в сечении кубаАВС: АС=Треугольник в сечении куба, P – точки пресечения диагоналей основания куба, АР=Треугольник в сечении куба, РР 1 =АА 1 = а . ОР=Треугольник в сечении кубаРР 1 = Треугольник в сечении куба, тогда из прямоугольного Треугольник в сечении кубаРОА АО=Треугольник в сечении куба. И так АО=Треугольник в сечении куба.

Тогда, если идёт речь о конусе:

Треугольник в сечении куба=Треугольник в сечении кубаТреугольник в сечении куба

Треугольник в сечении куба(из Треугольник в сечении куба).

Треугольник в сечении кубаТреугольник в сечении куба

Ответ: Треугольник в сечении куба

Треугольник в сечении куба

Треугольник в сечении куба

Треугольник в сечении куба

Ответ: Треугольник в сечении куба

Треугольник в сечении куба

Треугольник в сечении куба

Треугольник в сечении куба

Ответ: Треугольник в сечении кубаТреугольник в сечении куба

Корникова Т. А. и др. типовые тестовые задания. ЕГЭ – 2005

Задача. Даны призма АВСА1В1С1 и цилиндр. Стороны АВ и ВС основания призмы перпендикулярны ребру ВВ1 и взаимно перпендикулярны. Центром основания цилиндра служит точка А1 окружность второго основания проходит через середину ребра А1В1.

Найдите площадь полной поверхности цилиндра, если ВВ1=АВ=ВС=10. Найдите его объём.

Треугольник в сечении куба

Треугольник в сечении куба. Треугольник в сечении куба.

Так как стороны АВ и ВС основания призмы перпендикулярны ребру ВВ1 и взаимно перпендикулярны и АВ=ВС=ВВ1, то призма АВСА1В1С1 – это половина куба с ребром АВ. Окружность второго основания цилиндра проходит через середину А1В1. Эта окружность пересекает и другие рёбра куба. И эти точки пересечения окружности второго основания цилиндра и рёбер куба лежит в одной плоскости (плоскость сечения) и равноудалены от центра второго основания цилиндра. Плоскость второго основания цилиндра образует в сечении куба шестиугольник DEFKLM , все вершины которого являются вершинами соответствующих рёбер. Тогда ED =АР= R , Треугольник в сечении кубаЕВ1 D , Треугольник в сечении кубаВ=90 0 (по условию), B 1 E = DB 1=Треугольник в сечении куба, тогда по теореме Пифагора ED =Треугольник в сечении куба, R =Треугольник в сечении куба.

Докажем, что АО перпендикулярно к сечению DEFKLM ,так как является его высотой цилиндра.

Треугольник в сечении кубаРОА , Треугольник в сечении кубаР=90 0 РА=Треугольник в сечении куба, РО=Треугольник в сечении куба.

По теореме Пифагора ОА= Треугольник в сечении куба(ОА= h =Треугольник в сечении куба).

Треугольник в сечении кубаSPO, Треугольник в сечении куба P=90 0 PS= Треугольник в сечении кубаSOТреугольник в сечении куба

Треугольник в сечении кубав Треугольник в сечении кубаAOS: Треугольник в сечении кубаAO 2 =75 SO 2 = Треугольник в сечении куба

AS 2 =AO 2 +SO 2 . Треугольник в сечении кубаAOS – прямоугольный АО Треугольник в сечении кубаSO .

Треугольник в сечении куба

Треугольник в сечении куба

Ответ: Треугольник в сечении куба

Корникова Т. А. и др. типовые тестовые задания. ЕГЭ – 2005

Задача. Даны призма АВСА1В1С1 и конус. Стороны АВ и ВС основания перпендикулярны ребру ВВ1 и взаимно перпендикулярны. Вершина конуса располагается в точке А, окружность основания проходит через середину ребра А1В1.

Найдите площадь полной поверхности конуса, если ВВ1=АВ=ВС=8. Найдите объём этого конуса.

Треугольник в сечении куба

Треугольник в сечении куба. Треугольник в сечении куба.

Так как по условию дана прямая призма, в которой ВВ1=АВ=ВС, то эта призма является половиной куба. Вершина куба А является и вершиной конуса, основание которого пересекает А1В1 в точке D , следовательно AD – образующая конуса AD =Треугольник в сечении куба. Сечение куба плоскостью основания конуса – это правильный шестиугольник DEFKLM , т.к. А D , AE , AF , AK , AL , AM – это образующие конуса, вершины D , E , F , K , L , M – равноудалены от основания высоты конуса в точке О, являются серединами рёбер куба. R=ED, Треугольник в сечении кубаEB 1 D, B 1 D =B 1 E=4, ED=4Треугольник в сечении куба.

Треугольник в сечении кубаAA 1 D, Треугольник в сечении куба A 1 =90 0 , AD=Треугольник в сечении куба.

Треугольник в сечении куба

Треугольник в сечении куба.

AC = Треугольник в сечении куба Треугольник в сечении куба (из Треугольник в сечении кубаОАН, ОН Треугольник в сечении кубаАН, НО=4, АН=4Треугольник в сечении куба).

Треугольник в сечении куба

Ответ:Треугольник в сечении куба

В результате проведённого компьютерного эксперимента в работе было выявлено: что в зависимости от точек задающих секущую плоскость в сечении куба могут получиться треугольники (произвольный, равнобедренный и правильный), четырёхугольники (квадрат, прямоугольник, трапеция, ромб, параллелограмм), пятиугольники и шестиугольники. Особое выделены правильный треугольник и шестиугольник, рассмотрены свойства этих многоугольников и задачи с ними связанные располагавшиеся в одном из пособий для подготовки к ЕГЭ по математике.

Выполнение работы расширило мои представления о выполнении построений сечения многогранников плоскостью, дало возможность более глубоко освоить некоторые компьютерные программы способствующие развитию конструктивных навыков, которые позволили разобраться в решении задач по стереометрии, предлагающихся в ЕГЭ по математике.

Видео:Как строить сечение куба? Стереометрия. 10-11 класс | Математика | TutorOnlineСкачать

Как строить сечение куба? Стереометрия. 10-11 класс | Математика | TutorOnline

Методы построения сечений многогранников

Разделы: Математика

Метод сечений многогранников в стереометрии используется в задачах на построение. В его основе лежит умение строить сечение многогранника и определять вид сечения.

Данный материал характеризуется следующим особенностями:

  1. Метод сечений применяется только для многогранников, так как различные сложные (наклонные) виды сечений тел вращения не входят в программу средней школы.
  2. В задачах используются в основном простейшие многогранники.
  3. Задачи представлены в основном без числовых данных, чтобы создать возможность их многовариантного использования.

Чтобы решить задачу построения сечения многогранника ученик должен знать:

  • что значит построить сечение многогранника плоскостью;
  • как могут располагаться относительно друг друга многогранник и плоскость;
  • как задается плоскость;
  • когда задача на построение сечения многогранника плоскостью считается решенной.

Поскольку плоскость определяется:

  • тремя точками;
  • прямой и точкой;
  • двумя параллельными прямыми;
  • двумя пересекающимися прямыми,

построение плоскости сечения проходит в зависимости от задания этой плоскости. Поэтому все способы построения сечений многогранников можно разделить на методы.

Существует три основных метода построения сечений многогранников:

  1. Метод следов.
  2. Метод вспомогательных сечений.
  3. Комбинированный метод.

Первые два метода являются разновидностями Аксиоматического метода построения сечений.

Можно также выделить следующие методы построения сечений многогранников:

  • построение сечения многогранника плоскостью, проходящей через заданную точку параллельно заданной плоскости;
  • построение сечения, проходящего через заданную прямую параллельно другой заданной прямой;
  • построение сечения, проходящего через заданную точку параллельно двум заданным скрещивающимся прямым;
  • построение сечения многогранника плоскостью, проходящей через заданную прямую перпендикулярно заданной плоскости;
  • построение сечения многогранника плоскостью, проходящей через заданную точку перпендикулярно заданной прямой.

В федеральный перечень учебников по геометрии для 10-11 класов входят учебники авторов:

  • Атанасяна Л.С., Бутузова В.Ф., Кадомцева С.Б. и др (Геометрия, 10-11);
  • Погорелова А.В. (Геометрия, 7-11);
  • Александрова А.Д., Вернера А.Л., Рыжик В.И. (Геометрия, 10-11);
  • Смирновой И.М. (Геометрия, 10-11);
  • Шарыгина И.Ф. (Геометрия, 10-11).

Рассмотрим подробнее учебники Л.С, Атанасяна и Погорелова А.В.

В учебнике Л.С. Атанасяна на тему “Построение сечений многогранников” выделено два часа. В 10 классе в теме “Параллельность прямых и плоскостей” после изучения тетраэдра и параллелепипеда отводится один час на изложение параграфа “Задачи на построение сечений”. Рассматриваются сечения тетраэдра и параллелепипеда. И тема “Параллельность прямых и плоскостей” завершается решением задач на одном или двух часах (всего задач на построение сечений в учебнике восемь).

В учебнике Погорелова А.В. на построение сечений отводится около трех часов в главе “Многогранники”: один – на изучение темы “Изображение призмы и построение ее сечений”, второй – на изучение темы “Построение пирамиды и ее плоских сечений” и третий – на решение задач. В списке задач, приведенных после темы, задач на сечение насчитывается всего около десяти.

Мы предлагаем систему уроков по теме “Построение сечений многогранников” для учебника Погорелова А.В.

Материал предлагается расположить в той последовательности, в какой он может применяться для обучения учащихся. Из изложения темы “Многогранники” предлагается исключить следующие параграфы: “Построение сечений призмы” и “Построение сечений пирамиды” с тем, чтобы систематизировать данный материал в конце этой темы “Многогранники”. Классифицировать его по тематике задач с примерным соблюдением принципа “от простого к сложному” можно весьма условно следующим образом:

  1. Определение сечения многогранников.
  2. Построение сечений призмы, параллелепипеда, пирамиды методом следов. (Как правило в школьном курсе стереометрии используются задачи на построение сечений многогранников, решаемые основными методами. Остальные методы, в связи с их более высоким уровнем сложности, учитель может оставить для рассмотрения на факультативных занятиях или на самостоятельное изучение. В задачах на построение основными методами требуется построить плоскость сечения, проходящую через три точки).
  3. Нахождение площади сечений в многогранниках (без использования теоремы о площади ортогональной проекции многоугольника).
  4. Нахождение площади сечений в многогранниках (с применением теоремы о площади ортогональной проекции многоугольника).

СТЕРЕОМЕТРИЧЕСКИЕ ЗАДАЧИ НА ПОСТРОЕНИЕ СЕЧЕНИЙ МНОГОГРАННИКОВ И МЕТОДИКА ИХ ИСПОЛЬЗОВАНИЯ НА УРОКАХ В 10-11 КЛАССАХ.

(система уроков и факультативных занятий по теме “Построение сечений многогранников”)

Тема урока: “Построение сечений многогранников”.

Цель урока: ознакомление с методами построений сечений многогранников.

💡 Видео

Как строить сечения тетраэдра и пирамидыСкачать

Как строить сечения тетраэдра и пирамиды

Как строить сеченияСкачать

Как строить сечения

СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnlineСкачать

СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnline

10 класс, 14 урок, Задачи на построение сеченийСкачать

10 класс, 14 урок, Задачи на построение сечений

Как строить сечения параллелепипедаСкачать

Как строить сечения параллелепипеда

ВСЕ О СЕЧЕНИЯХ В СТЕРЕОМЕТРИИСкачать

ВСЕ О СЕЧЕНИЯХ В СТЕРЕОМЕТРИИ

СЕЧЕНИЕ КУБА ПЛОСКОСТЬЮ ПРОХОДЯЩЕЙ ЧЕРЕЗ ТРИ ТОЧКИ. ЗАДАЧИ ПО СТЕРЕОМЕТРИИСкачать

СЕЧЕНИЕ КУБА ПЛОСКОСТЬЮ ПРОХОДЯЩЕЙ ЧЕРЕЗ ТРИ ТОЧКИ. ЗАДАЧИ ПО СТЕРЕОМЕТРИИ

Сечение куба. Как строить сечение куба. Метод следов. Метод параллельностиСкачать

Сечение куба. Как строить сечение куба. Метод следов. Метод параллельности

Построение сечения кубаСкачать

Построение сечения куба

Сечение куба плоскостьюСкачать

Сечение куба плоскостью

Построение сечений Занятие 1Скачать

Построение сечений Занятие 1

ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!Скачать

ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!

ПОСТРОЕНИЕ СЕЧЕНИЙ ТЕТРАЭДРА ПЛОСКОСТЬЮСкачать

ПОСТРОЕНИЕ СЕЧЕНИЙ ТЕТРАЭДРА ПЛОСКОСТЬЮ

🔥Как строить сечения куба, параллелепипеда через заданные точки?Скачать

🔥Как строить сечения куба, параллелепипеда через заданные точки?

Сечения многогранников. Метод следов.Скачать

Сечения многогранников. Метод следов.

ЕГЭ профиль: сечения часть 1Скачать

ЕГЭ профиль: сечения часть 1

Определение натуральной величины треугольника АВС методом замены плоскостей проекцииСкачать

Определение натуральной величины треугольника АВС методом замены плоскостей проекции
Поделиться или сохранить к себе: