Треугольник в неевклидовой геометрии

Видео:НЕЕВКЛИДОВАЯ ГЕОМЕТРИЯ. оказывается это так просто...Скачать

НЕЕВКЛИДОВАЯ ГЕОМЕТРИЯ. оказывается это так просто...

Отображение геометрии Лобачевского на псевдосфере (интерпретация Бельтрами)

Происхождение Неевклидовой геометрии.

Среди аксиом Евклида была аксиома о параллельности прямых, а точнее, пятый постулат о параллельных линиях: если две прямые образуют с третьей по одну ее сторону внутренние углы, сумма которых меньше развернутого угла, то такие прямые пересекаются при достаточном продолжении с одной стороны.

В современной формулировке она говорит о существовании не более одной прямой, проходящей через данную точку вне данной прямой и параллельной этой данной прямой.

Сложность формулировки пятого постулата породила мысль о возможной зависимости его от других постулатов, и потому возникали попытки вывести его из остальных предпосылок геометрии. Все попытки заканчивались неудачей. Были попытки доказательства от противного: прийти к противоречию, предполагая верным отрицание постулата. Однако и этот путь был безуспешным.

Оказалось то, что пятый постулат не зависит от предыдущих, а значит, его можно заменить на ему эквивалентный. И в начале XIX века, почти одновременно сразу у нескольких математиков: у К. Гаусса в Германии, у Я. Больяи в Венгрии и у Н. Лобачевского в России, возникла мысль о существовании геометрии, в которой верна аксиома, заменяющая пятый постулат: на плоскости через точку, не лежащую на данной прямой, проходят, по крайней мере, две прямые, не пересекающие данную.

В силу приоритета Н. Лобачевского, который первым выступил с этой идеей в 1826, и его вклада в развитие новой, отличной от евклидовой геометрии последняя была названа в его честь «геометрией Лобачевского».

Аксиоматика планиметрии Лобачевского отличается от аксиоматики планиметрии Евклида лишь одной аксиомой: аксиома параллельности заменяется на ее отрицание – аксиому параллельности Лобачевского:

Найдутся такая прямая a и такая не лежащая на ней точка A, что через A проходят по крайней мере две прямые, не пересекающие a.

Непротиворечивость системы аксиом доказывается представлением модели, в которой реализуются данные аксиомы.

Три модели геометрии Лобачевского.

Выделяют три различные модели геометрии Лобачевского:

1) Модель Пуанкаре

2) Модель Клейна

3) Отображение геометрии Лобачевского на псевдосфере (интерпретация Бельтрами)

Модель Пуанкаре.

В модели Пуанкаре на евклидовой плоскости E фиксируется горизонтальная прямая x. Она носит название «абсолюта». Точками плоскости Лобачевского считаются точки плоскости E, лежащие выше абсолюта x. Таким образом, в модели Пуанкаре плоскость Лобачевского – это полуплоскость L, лежащая выше абсолюта.

Прямыми плоскости L считаются полуокружности с центрами на абсолюте или лучи с вершинами на абсолюте и перпендикулярные ему.

Треугольник в неевклидовой геометрииФигура на плоскости Лобачевского – это фигура полуплоскости L. Принадлежность точки фигуре понимается так же, как и на евклидовой плоскости E. При этом отрезком плоскости L считается дуга окружности с центром на абсолюте или отрезок прямой, перпендикулярной абсолюту (рис. 1). Точка K лежит между точками C и D, значит, что K принадлежит дуге CD. В условиях нашей модели это эквивалентно тому, что K’ лежит между C’ и D’, где C’, K’ и D’ – проекции точек C, K и D соответственно на абсолют. Чтобы ввести понятие равенства неевклидовых отрезков в модели Пуанкаре, определяют неевклидовы движения в этой модели. Неевклидовым движением называется преобразование L, которое является композицией конечного числа инверсий с центрами на абсолюте и осевых симметрий плоскости E, оси которых перпендикулярны абсолюту. Инверсии с центром на абсолюте и осевые симметрии

Рисунок 1плоскости E, оси которых перпендикулярны абсолюту, называют неевклидовыми симметриями. Два неевклидовых отрезка называют равными, если один из них неевклидовым движением можно перевести во второй.

Модель Клейна.

За плоскость принимается какой-либо круг (рис. 2.1), за точки — точки принадлежащие этому кругу, за прямые — хорды — конечно, с исключением концов, поскольку рассматривается только внутренность круга. За перемещения принимаются преобразования круга, переводящие его в себя и хорды — в хорды. Соответственно, «конгруэнтными» называются фигуры, переводимые друг в друга такими преобразованиями.

Треугольник в неевклидовой геометрии

Очевидно, что в пределах определенной части плоскости (круга), как бы эта часть не была велика, можно провести через данную точку С множество прямых, не пересекающих данной прямой. Внутри круга любого конечного радиуса существует множество прямых (т.е. хорд), проходящих через т. С и не встречающих прямой АВ (рис.2.2). Всякая теорема планиметрии Лобачевского является в этой модели теоремой геометрии Евклида и, обратно, всякая теорема геометрии Евклида, говорящая о фигурах внутри данного круга, является теоремой геометрии Лобачевского. Это общее утверждение доказывается проверкой справедливости в модели аксиом геометрии Лобачевского. Поэтому, если в геометрии Лобачевского имеется противоречие, то это же противоречие имеется и в геометрии Евклида.

Далее, всякая теорема геометрии Лобачевского описывает в модели Клейна некоторые факты, имеющие место внутри круга. Именно факты, если мы берем не абстрактный круг, а реальный круг и реальные хорды и интерпритируем теоремы как утверждения об этих реальных вещах, взятые, конечно, с той точностью, которая доступна для наших построений. Таким образом, геометрия Лобачевского в модели Клейна имеет вполне реальный смысл с той точностью, с какой вообще имеет смысл геометрия в применении к реальным телам.

Отображение геометрии Лобачевского на псевдосфере (интерпретация Бельтрами)

Эудженио Бельтрами (1835-1900) нашел модель для неевклидовой геометрии, показав в своей работе «Опыт интерпретации неевклидовой геометрии» (1868г.), что наряду с плоскостями, на которых осуществляется евклидова геометрия, и сферическими поверхностями, на которые действуют формулы сферической геометрии, существуют и такие реальные поверхности, названные им псевдосферами (рис.4), на которых частично осуществляется планиметрия Лобачевского.

Треугольник в неевклидовой геометрии Треугольник в неевклидовой геометрииИзвестно, что сферу можно получить вращением полуокружности вокруг своего диаметра. Подобно тому, псевдосфера образуется вращением линии FCE, называемой трактрисой, вокруг ее оси АВ (рис.3). Итак, псевдосфера – это поверхность в обыкновенном реальном пространстве, на котором выполняются многие аксиомы и теоремы неевклидовой планиметрии Лобачевского. Например, если начертить на псевдосфере треугольник, то легко усмотреть, что сумма его внутренних углов меньше 2π. Сторона треугольника – это дуги псевдосферы, дающие кратчайшее расстояние между двумя ее точками и выполняющие ту же роль, которую выполняют прямые на плоскости. Эти линии, называемые геодезическими, можно получить, зажав туго натянутую и политую краской или мелом нить, в вершинах треугольника. Таким образом, для планиметрии Лобачевского была найдена реальная модель — псевдосфера. Формулы новой геометрии Лобачевского нашли конкретное истолкование. Ими можно было пользоваться, например, для решения псевдосферических треугольников. Псевдосферу, которую мы назвали «моделью», Бельтрами назвал интерпретацией (истолкованием) неевклидовой геометрии на плоскости.

Впоследствии, с развитием и введением в математику аксиоматического метода, под

Рисунок 4интерпретацией (или моделью) некоторой системы аксиом стали понимать любое множество объектов, в которых данная система аксиом находит свое реальное воплощение, то есть, любая совокупность объектов, отношение между которыми полностью совпадают с теми, которые описываются в данной системе аксиом. При этом полагают, что если для некоторой системы аксиом существует или можно построить интерпретацию (модель), то эта система аксиом непротиворечива, то есть, не только сами аксиомы, но и любые теоремы, на них логически основывающиеся никогда не могут противоречить одна другой.

Свойства и понятия.

Рассмотрим некоторые свойства, понятия и факты выполняющиеся в геометрии Лобачевского. В данном случае я рассматривал свойства основываясь на модели Клейна. Большинство из них будут выполнятся и на других моделях неевклидовой геометрии.

Треугольник в неевклидовой геометрии Треугольник в неевклидовой геометрии1) Если прямые CN и CL не встречают прямой АВ, то любая прямая СМ, проходящая через т. C внутри вертикальных углов NCL и N’CL’ также не встретит прямой АВ (рис.5). Отсюда первое следствие аксиомы Лобачевского: через т. С вне прямой АВ плоскости АВС, проходит бесчисленное множество прямых, не пересекающихся с прямой АВ.

2) Если соединить (рис.5) какую-либо точку прямой DB с т. С, получим прямую, допустим, СК, проходящую через т. С и встречающую АВ. Итак, все прямые, проходящие через т. С внутри прямого угла NCD, разбиваются на две категории, на два класса: встречающие прямую АВ (названные Лобачевским «сходящимися» с АВ) и не встречающие прямую АВ (их Лобачевский называет «расходящимися» с АВ). Любая прямая первой категории образует с перпендикуляром CD угол, меньший угла, образованного перпендикуляром CD с любой прямой второй категории. Вращаясь непрерывно около т. С в направлении против часовой стрелки, прямая СК на известном этапе, допустим в положении CL, перестанет пересекать АВ и из сходящейся перейдет в категорию расходящихся с АВ прямых. Эта предельная прямая CL, служащая переходной прямой, граничной, отделяющей сходящиеся от расходящихся прямых, и названной Лобачевским параллельной к прямой АВ из т. С. Итак, параллельная CL – это не просто расходящаяся прямая, а первая, граничная расходящаяся, т.е. такая, что любая прямая, проходящая через т. С внутри угла, образованного параллельной CL и перпендикуляром CD, является сходящейся прямой, а всякая прямая, проходящая внутри угла LCN будет расходящаяся с прямой АВ. Угол DCL, образованный параллельной CL с перпендикуляром CD, называют углом параллельности.

В силу симметрии относительно перпендикуляра CD внутри прямого угла N’CD получим картину, аналогично той, которую мы имеем в угле NCD, т.е. построив угол DCF равный углу DCL, получим прямую CF, также параллельную прямой АВ слева от перпендикуляра CD. Итак, через т. С, лежащую вне прямой АВ, проходят в плоскости АВС две прямые, параллельные прямой АВ, в одну и другую сторону этой прямой. Все прямые, проходящие внутри вертикальных углов, образованных параллельными прямыми LL’ и GG’ (в том числе и евклидова «параллельная» NN’), расходятся с АВ; все остальные прямые, проходящие через т. С сходятся с прямой АВ.

Следовательно: а) 2 прямые как АВ и NN’, имеющие общий перпендикуляр CD, расходятся; б) если вращать прямую NN’ около т. С, допустим, по часовой стрелке, а прямую АВ около т.D в том же направлении так, чтобы углы, образованные этими прямыми с пересекающей их прямой CD, оставались равными, то прямые АВ и NN’ остаются расходящимися, т.е. две прямые, образующие при пересечении с третьей прямой равные соответственные углы, расходятся.

Треугольник в неевклидовой геометрии3) Из предыдущего положения вытекает, что на параллели Лобачевского различается направление параллельности. Прямая CE параллельна прямой АВ в направлении или в сторону от A к B, прямая CF параллельна той же прямой AB в направлении или в сторону ВА (от В к А) (рис.5).

Несмотря на коренные отличия, понятия параллельности у Лобачевского от одновременного понятия в геометрии Евклида, можно доказать, что «параллельность» в смысле Лобачевского тоже обладает свойствами взаимности или симметрии (если прямая а параллельна прямой в, то в параллельна а). И транзитивности (если а и в параллельны с, то а и в параллельны между собой).

Приведем некоторые другие понятия и факты геометрии Лобачевского:

1) Функция Лобачевского.

Треугольник в неевклидовой геометрииКак уже говорилось выше, через т. С в плоскости САВ проходят 2 направленные параллели к прямой АВ (СЕ и CF), симметрично расположенные относительно перпендикуляра CD (рис.6). Угол параллельности, образованный каждой из этих параллелей с CD, является острым, его величина не постоянна и зависит от расстояния CD(в геометрии Евклида угол параллельности всегда прямой). То, что угол параллельности острый, вытекает непосредственно из аксиомы Лобачевского. В изменении этого угла с изменением расстояния CD можно убедиться путем следующих рассуждений (рис.7). Треугольник в неевклидовой геометрииПусть C’D>CD, CE || AB, в т. С угол параллельности – W. Пусть далее прямая C’E ‘|| AB в т. С’ угол параллельности — W’. В силу свойства транзитивности CE||C’E’. Ясно, что W¹W’. Действительно, если допустить, что W= W’, то следует также допустить, что C’E’ и CE – расходящиеся прямые, как было показано выше, а это неверно. Построим C’K, образующую с CD угол a= w, ясно, что w’ b + g .

5)Если три угла одного треугольника соответственно равны трем углам другого треугольника, то эти треугольники равны между собой. Это четвертый признак равенства треугольников в геометрии Лобачевского.

Таким образом, в плоскости Лобачевского треугольник вполне определяется своими углами. Стороны и углы зависят друг от друга. Отсюда ясно, что в геометрии Лобачевского нет подобных фигур. Действительно, ведь из существования подобных фигур вытекает евклидова аксиома параллельности.

6) Площади. Уже известно, что, чем меньше размеры фигур, которые мы изучаем, тем ближе к геометрии Евклида, в которой угловой дефект треугольника равен 0. Доказывается следующая теорема: площадь треугольника прямопропорциональна его угловому дефекту. Чем меньше размеры фигуры, тем меньше ее дефект, тем меньше площадь. Однако угловой дефект по определениям не может превзойти 2π, следовательно, и площадь треугольника в геометрии Лобачевского не может стать больше некоторой, определенной, конечной величины.

Видео:Неевклидова геометрия #shorts #nonEuclideangeometry #lobachevskyСкачать

Неевклидова геометрия #shorts #nonEuclideangeometry #lobachevsky

ЛОБАЧЕ́ВСКОГО ГЕОМЕ́ТРИЯ

  • В книжной версии

    Том 17. Москва, 2010, стр. 712-714

    Скопировать библиографическую ссылку:

    • Треугольник в неевклидовой геометрии
    • Треугольник в неевклидовой геометрии
    • Треугольник в неевклидовой геометрии
    • Треугольник в неевклидовой геометрии
    • Треугольник в неевклидовой геометрии

    ЛОБАЧЕ́ВСКОГО ГЕОМЕ́ТРИЯ, од­на из не­евк­ли­до­вых гео­мет­рий, ос­но­ва­на на тех же по­сыл­ках, что и обыч­ная – евк­ли­до­ва гео­мет­рия, за ис­клю­че­ни­ем ак­сио­мы о па­рал­лель­ных, ко­то­рая за­ме­ня­ет­ся на иную. Евк­ли­до­ва ак­сио­ма о па­рал­лель­ных со­сто­ит в том, что че­рез точ­ку, не ле­жа­щую на дан­ной пря­мой, про­хо­дит не бо­лее чем од­на пря­мая, ле­жа­щая с дан­ной пря­мой в од­ной плос­ко­сти и не пе­ре­се­каю­щая её (в евк­ли­до­вой гео­мет­рии та­кие пря­мые на­зы­ва­ют па­рал­лель­ны­ми). В Л. г. эта ак­сио­ма за­ме­ня­ет­ся сле­дую­щей: че­рез точ­ку, не ле­жа­щую на дан­ной пря­мой, про­хо­дят по край­ней ме­ре две пря­мые, ле­жа­щие с дан­ной пря­мой в од­ной плос­ко­сти и не пе­ре­се­каю­щие её (дос­та­точ­но, что­бы это бы­ло вы­пол­не­но для од­ной точ­ки и од­ной пря­мой). На­ча­ло Л. г. бы­ло по­ло­же­но Н. И. Ло­ба­чев­ским , ко­то­рый впер­вые со­об­щил о ней в 1826. Не­сколь­ко позд­нее эту же тео­рию пред­ло­жил Я. Боль­яй ; по­это­му Л. г. ино­гда на­зы­ва­ют гео­мет­ри­ей Ло­ба­чев­ско­го – Боль­яя. Её так­же на­зы­ва­ют не­евк­ли­до­вой гео­мет­ри­ей, хо­тя обыч­но тер­ми­ну «не­евк­ли­до­ва гео­мет­рия» при­да­ют бо­лее ши­ро­кий смысл, вклю­чая сю­да и др. тео­рии, воз­ник­шие вслед за Л. г., а так­же тео­рии, ос­но­ван­ные на из­ме­не­нии по­сы­лок евк­ли­до­вой гео­мет­рии. Л. г. ино­гда на­зы­ва­ют ги­пер­бо­лич. не­евк­ли­до­вой гео­мет­ри­ей в про­ти­во­по­лож­ность эл­лип­тич. гео­мет­рии Ри­ма­на (см. Не­евк­ли­до­вы гео­мет­рии , Ри­ма­на гео­мет­рия ).

    Видео:Неевклидовы геометрии. Чуть-Чуть о Науке #НаукаСкачать

    Неевклидовы геометрии. Чуть-Чуть о Науке #Наука

    Реферат на тему «Геометрия Лобачевского»

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    Развитие управляющих функций мозга ребёнка: полезные советы и упражнения для педагогов

    Сертификат и скидка на обучение каждому участнику

    ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

    ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

    «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ»

    Геометрия Лобачевского. Факты геометрии Лобачевского. Параллельные и сверхпараллельные прямые по Лобачевскому. Пучки прямых и кривых плоскости Лобачевского. Модели геометрии Лобачевского (модель Бельтрами-Клейна, модель Пуанкаре, модель в пространстве).

    студентка 4 курса

    Видео:1. Лобачевский и его наследие. Основные постулаты геометрии.Скачать

    1. Лобачевский и его наследие. Основные постулаты геометрии.

    Введение

    Геометрия Лобачевского (гиперболическая геометрия) — одна из неевклидовых геометрий , геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия , за исключением аксиомы о параллельных , которая заменяется на аксиому о параллельных Лобачевского .

    В конце прошлого века в работах Пуанкаре и Клейна была установлена прямая связь геометрии Лобачевского с теорией функций комплексной переменной и с теорией чисел (точнее, арифметикой неопределенных квадратичных форм). С тех пор аппарат геометрии Лобачевского стал неотъемлемым компонентом этих разделов математики. В последние 15 лет значение геометрии Лобачевского еще более возросло благодаря работам американского математика Тёрстона (лауреата Филдсовской медали 1983 г.), установившего ее связь с топологией трехмерных многообразий. Десятки работ ежегодно публикуются в этой области. Современные исследования все больше требуют делового владения геометрией Лобачевского.

    Теория геометрии Лобачевского помогает взглянуть по-другому на окружающий нас мир, это интересный, необычный и прогрессивный раздел современной геометрии. Она дает материал для размышлений – в ней не все просто, не все ясно с первого взгляда, чтобы ее понять, нужно обладать фантазией и пространственным воображением.

    Видео:Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

    Сумма углов треугольника. Геометрия 7 класс | Математика

    ТЕОРЕТИЧЕСКАЯ КОНЦЕПЦИЯ ГЕОМЕТРИИ ЛОБАЧЕВСКОГО

    Видео:№194. Начертите треугольник. Через каждую вершину этого треугольника с помощью чертежногоСкачать

    №194. Начертите треугольник. Через каждую вершину этого треугольника с помощью чертежного

    1. Геометрия Лобачевского

    Геометрия, как наука, впервые сформировалась в Древней Греции, когда геометрические закономерности и зависимости, найденные ранее опытным путем, были приведены в надлежащую систему и доказаны.

    «Начала» — величайший памятник деятельности Евклида, в котором он собрал воедино всё то, что сделали его предшественники в области геометрии и «словесной алгебры». Но не только в этом его заслуга. Он также внёс много своего, нового, оригинального. Вплоть до XX века геометрию в школах преподавали по учебникам, в которые были включены евклидовы «Начала», переведённые и литературно обработанные.

    Однако не всё написанное Евклидом удовлетворяло живших после него математиков. Он сделал попытку дать аксиоматическое изложение геометрии, т.е. сформулировать небольшое количество аксиом, из которых логически выводятся все теоремы геометрии. Список аксиом сразу же подвергся критике, некоторые из них оказались совсем не нужными, например, что «все прямые углы равны между собой».

    Так называемый пятый постулат Евклида вызвал особые нарекания математиков. Именно эта аксиома, как показала историческое развитие науки, содержала в себе зародыш другой, неевклидовой геометрии.

    Вот о чём говорится в пятом постулате: если две прямые a и b образуют при пересечении с третьей прямой односторонние внутренние углы α и β, сумма величин которых меньше двух прямых углов (т.е. меньше 180˚), то эти две прямые обязательно пересекаются, причём именно стой стороны от третьей прямой, по которую расположены углы α и β (составляющие вместе не менее 180˚).

    Данное утверждение заметно сложнее остальных аксиом, поэтому пятый постулат часто заменяют равносильной аксиомой параллельности: через точку, лежащую вне данной прямой, можно провести не более одной прямой, лежащей с данной в одной плоскости и не пересекающей ее.

    Попытки доказательства пятого постулата предпринимались в течение более чем двух тысячелетий сначала в Древней Греции, затем на средневековом Востоке, а позже в Западной Европе. Но неудачные попытки прямого доказательства направили ход мыслей ученных в иное русло. Пятый постулат решили заменить противоположным утверждением. Двери в новую геометрию приоткрыли такие ученые, как Джованни Саккери и Иоганн Ламберт, а их работу продолжили уже другие ученые, среди которых был выдающийся русский математик Николай Иванович Лобачевский.

    Н. И. Лобачевский родился 20 ноября (1 декабря) 1792 года в Нижнем Новгороде. Окончил Казанскую гимназию в конце 1806 года, показав хорошие знания, особенно по математике и языкам — латинскому, немецкому, французскому. В проявившемся уже тогда его интересе к математике — большая заслуга преподавателя гимназии Г. И. Карташевского. В 15 лет поступил на физико-математический факультет Казанского университета. В это время там читал лекции по математике профессор И. Бартельс (1769-1836). Он обратил внимание на одаренного мальчика и начал заниматься с Лобачевским. В 19 лет Николай Иванович получил степень магистра, а в 23 года стал профессором. В течение 40 лет преподавал в Казанском университете, в том числе 19 лет руководил им в должности ректора; его активность и умелое руководство вывели университет в число передовых российских учебных заведений.

    Еще до открытия неевклидовой геометрии Лобачевский написал в 1823г. учебное руководство, озаглавленное «Геометрия». В нем впервые со всей четкостью отражена так называемая теперь фузионистская точка зрения, согласно которой планиметрию не следует по евклидовой манере отрывать от стереометрии; наоборот, обе эти части геометрии нужно по возможности объединить, т.е. аналогичные начала планиметрии и стереометрии следует преподавать параллельно. Так рядом с кругом Лобачевский рассматривал шар и сферу; взаимное расположение прямых на плоскости он рассматривает совместно с взаимным расположением плоскостей в пространстве, почти одновременно трактует многоугольники и многогранники. Лишь в конце позапрошлого столетия итальянский математик Г. Веронезе также стал проводить в своих учебных руководствах по элементарной геометрии идею фузионизма.

    Хотя Лобачевский занимался различными вопросами математики, мировую известность он получил как создатель новой геометрии. Лобачевский был с юношеских лет заинтересован аксиомой параллельных прямых. Сначала он пытался доказать пятый постулат, но постепенно пришел к выводу, что этого сделать нельзя, исходя из остальных аксиом. Тогда он заменил его на противоположное утверждение, которое сейчас называют аксиомой Лобачевского: через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её.

    В разработанной Лобачевским новой геометрии многие утверждения звучат неожиданно. Вот некоторые из них:

    Треугольник в неевклидовой геометрии

    1. Через точку А, не лежащую на прямой а, проходит бесконечное множество прямых, не пересекающих прямую а и лежащих с ней в одной плоскости.

    2. Геометрическое место точек, равноудаленных от данной прямой, есть кривая линия.

    3. Сумма углов треугольника – величина переменная. Она зависит от размера треугольника, но всегда меньше π.

    4. Площадь треугольника вычисляется по формуле S = r 2 ( π – A – B – C ), где r – радиус кривизны пространства, а A , B , C – величины углов треугольника, выраженные в радианах

    Остальные аксиомы Лобачевский оставил без изменения и на основе новой системы построил новую геометрию, отличную от евклидовой.

    Можно считать, что неевклидова геометрия родилась в феврале 1826 года. Лобачевский выступил с докладом о своем открытии, но поддержки не нашёл. Математики его времени ещё не были подготовлены к мысли о возможности существования иной, неевклидовой геометрии. Учёный умер, так и не добившись признания своих идей. Впрочем, один человек понимал и поддерживал его работы.

    Гениальный Гаусс, «король математиков» (судя по архиву, разобранному уже после смерти), ещё в 1815 г., за девять лет до сообщения Лобачевского, размышлял над аналогичными идеями. И тем не менее Гаусс, к мнению которого прислушивались все, не решился опубликовать свои работы. Однако Гаусс добился того, что Лобачевского избрали иностранным членом – корреспондентом Геттингенского учёного общества. Это единственная почесть, возданная Лобачевскому при жизни.

    Видео:Неевклидова геометрия. Часть 2. История математикиСкачать

    Неевклидова геометрия. Часть 2. История математики

    2. Факты геометрии Лобачевского

    Ло­ба­чев­ский стро­ил свою гео­мет­рию, от­прав­ля­ясь от ос­нов­ных геометрических по­ня­тий и сво­ей ак­сио­мы, и до­ка­зы­вал тео­ре­мы геометрическим ме­то­дом, по­доб­но то­му как это де­ла­ет­ся в гео­мет­рии Евк­ли­да. Ос­но­вой слу­жи­ла тео­рия па­рал­лель­ных ли­ний, т. к. имен­но здесь на­чи­на­ет­ся от­ли­чие геометрии Лобачевского от гео­мет­рии Евк­ли­да. Все тео­ре­мы, не за­ви­ся­щие от ак­сио­мы о па­рал­лель­ных, об­щи обе­им гео­мет­ри­ям и об­ра­зу­ют т. н. аб­со­лют­ную гео­мет­рию, к ко­то­рой от­но­сят­ся, напр., тео­ре­мы о ра­вен­ст­ве тре­уголь­ни­ков. Вслед за тео­ри­ей па­рал­лель­ных строи­лись др. раз­де­лы, вклю­чая три­го­но­мет­рию и на­ча­ла ана­ли­ти­че­ской и диф­фе­рен­ци­аль­ной гео­мет­рий. Ни­же пе­ре­чис­ле­ны неск. фак­тов геометрии Лобачевского, ус­та­нов­лен­ных са­мим Н. И. Ло­ба­чев­ским, ко­то­рые от­ли­ча­ют её от гео­мет­рии Евк­ли­да. [12]

    1) В геометрии Лобачевского не су­ще­ст­ву­ет по­доб­ных, но не рав­ных тре­уголь­ни­ков; тре­уголь­ни­ки рав­ны, ес­ли их уг­лы рав­ны. По­это­му су­ще­ст­ву­ет аб­со­лют­ная еди­ни­ца дли­ны, т. е. от­ре­зок, вы­де­лен­ный по сво­им свой­ст­вам, по­доб­но то­му как пря­мой угол вы­де­лен свои­ми свой­ст­ва­ми. Та­ким от­рез­ком мо­жет слу­жить, напр., сто­ро­на пра­виль­но­го тре­уголь­ни­ка с дан­ной сум­мой уг­лов.

    2) Сум­ма уг­лов вся­ко­го тре­уголь­ни­ка мень­ше ππ и мо­жет быть сколь угод­но близ­кой к ну­лю. Это вид­но на мо­де­ли Пу­ан­ка­ре. Разность π−(α+β+γ)π−(α+β+γ), где α,β,γα,β,γ – уг­лы тре­уголь­ни­ка, про­пор­цио­наль­на его пло­ща­ди.

    3) Че­рез точ­ку, не ле­жа­щую на дан­ной пря­мой, про­хо­дит бес­ко­неч­но мно­го пря­мых, не пе­ре­се­каю­щих прямую и на­хо­дя­щих­ся с ней в од­ной плос­ко­сти; сре­ди них есть две край­ние, ко­то­рые назы­ва­ют­ся па­рал­лель­ны­ми пря­мой в смыс­ле Ло­ба­чев­ско­го. В мо­де­лях Клей­на и Пу­ан­ка­ре они изо­бра­жа­ют­ся хор­да­ми (ду­га­ми ок­руж­но­стей), имею­щи­ми с хор­дой (ду­гой) об­щий ко­нец.

    4) Ес­ли пря­мые име­ют об­щий пер­пен­ди­ку­ляр, то они бес­ко­неч­но рас­хо­дят­ся в обе сто­ро­ны от не­го. К лю­бой из них мож­но вос­ста­но­вить пер­пен­ди­ку­ля­ры, ко­то­рые не дос­ти­га­ют др. пря­мой.

    5) Ли­ния рав­ных рас­стоя­ний от пря­мой есть не пря­мая, а осо­бая кри­вая, на­зы­вае­мая эк­ви­ди­стан­той или ги­пер­цик­лом.

    6) Пре­дел бес­ко­неч­но рас­ту­щих ок­руж­но­стей есть не пря­мая, а осо­бая кри­вая, на­зы­вае­мая пре­дель­ной ок­руж­но­стью или ори­цик­лом.

    7) Пре­дел сфер бес­ко­неч­но уве­ли­чи­ваю­ще­гося ра­диу­са есть не плос­кость, а осо­бая по­верх­ность – пре­дель­ная сфе­ра, или ори­сфе­ра; за­ме­ча­тель­но, что на ней име­ет ме­сто евк­ли­до­ва гео­мет­рия. Это по­слу­жи­ло Ло­ба­чев­ско­му ос­но­вой для вы­во­да фор­мул три­го­но­мет­рии.

    8) Дли­на ок­руж­но­сти не про­пор­цио­наль­на ра­диу­су, а рас­тёт бы­ст­рее, чем ра­ди­ус.

    9) Чем мень­ше об­ласть в про­стран­ст­ве или на плос­ко­сти Ло­ба­чев­ско­го, тем мень­ше мет­рические со­от­но­ше­ния в этой об­лас­ти от­ли­ча­ют­ся от со­от­но­ше­ний евк­ли­до­вой гео­мет­рии. Напр., чем мень­ше тре­уголь­ник, тем мень­ше сум­ма его уг­лов от­ли­ча­ет­ся от π, чем мень­ше ок­руж­ность, тем мень­ше от­но­ше­ние её дли­ны к ра­диу­су от­ли­ча­ет­ся от 2π, и т. п. Умень­ше­ние об­лас­ти фор­маль­но рав­но­силь­но уве­ли­че­нию еди­ни­цы дли­ны, по­это­му при без­гра­нич­ном уве­ли­че­нии еди­ни­цы дли­ны фор­му­лы Л. г. пе­ре­хо­дят в фор­му­лы евк­ли­до­вой гео­мет­рии. Евк­ли­до­ва гео­мет­рия есть в этом смыс­ле «пре­дель­ный» слу­чай гео­мет­рии Ло­ба­чев­ско­го.

    Видео:Задача, которую боятсяСкачать

    Задача, которую боятся

    3. Параллельные и сверхпараллельные прямые по Лобачевскому.

    В 19 веке Николай Иванович Лобачевский, а также немец Гаусс и венгр Больяи, предложили геометрию, в которой имеются минимум 2 прямые коллинеарные заданной. Эти прямые пересекаются между собой и приближаются к заданной прямой с двух различных направлений. Место их пересечения с заданной прямой находится в бесконечно удаленной точке. Непересекающиеся, но не параллельные прямые называются сверхпараллельными прямыми.

    Теорема 1. Два перпендикуляра к одной прямой – сверхпараллельны.

    Теорема 2. Две сверхпараллельные прямые имеют общий перпендикуляр и притом единственный, он является кратчайшим расстоянием между этими прямыми.

    Теорема 3. Если две прямые при пересечении с третьей образуют равные соответственные углы или равные накрест лежащие углы, или внутренние односторонние углы, в сумме составляющие 2d, то эти прямые сверхпараллельны [12].

    Видео:Типичный урок геометрииСкачать

    Типичный урок геометрии

    4. Пучки прямых и кривых на плоскости Лобачевского

    Совокупность всех прямых плоскости Лобачевского, пересекающихся в общей точке О, называется пучком прямых первого рода. Точка О называется центром пучка.

    Совокупность прямых плоскости Лобачевского, параллельных между собой в одном направлении, называется пучком прямых второго рода. Говорят также, что этот пучок имеет бесконечно удаленный центр.

    Совокупность прямых плоскости Лобачевского, перпендикулярных одной прямой а, называется пучком третьего рода. Прямая а называется осью пучка. Говорят, также, что пучок прямых третьего рода имеет идеальный центр.

    Множество всех прямых плоскости Лобачевского, проходящих через одну точку, будем называть пучком пересекающихся прямых. Множество всех расходящихся прямых, имеющих один и тот же общий перпендикуляр будем называть пучком расходящихся прямых. И множество всех прямых, параллельных между собой в одном и том же направлении, назовем пучком параллельных прямых. Точка пересечения прямых, принадлежащих пучку пересекающихся прямых, называется его центром. Общий перпендикуляр прямых, принадлежащих пучку расходящихся прямых, носит название его базы.

    Теорема о серединных перпендикулярах к сторонам треугольника Серединные перпендикуляры сторон треугольника на плоскости Лобачевского принадлежат либо пучку пересекающихся, либо пучку расходящихся, либо пучку параллельных прямых, при этом существуют треугольники, серединные перпендикуляры которых принадлежат каждому из трех типов пучков. [12]

    Свойства траекторий пучков

    1) Траектория пучка симметрична относительно любой своей оси. Под хордой траектории пучка будем понимать отрезок, соединяющий его две точки.

    2) Серединный перпендикуляр к хорде траектории является осью пучка.

    3) Пусть АВ – хорда траектории пучка. Тогда прямая АВ образует равные углы с лучами траектории, проведенными в точках А и В.

    Видео:Лобачевский против Евклида: две геометрии одного мираСкачать

    Лобачевский против Евклида: две геометрии одного мира

    5. Модели геометрии Лобачевского (модель Бельтрами-Клейна, модель Пуанкаре, модель в пространстве).

    Треугольник в неевклидовой геометрииПосле создания неевклидовой геометрии она долгое время не признавалась учеными. И первой, сразу возникшей проблемой, стало доказательство непротиворечивости геометрии Лобачевского. Первые исследования по вопросу непротиворечивости геометрии Лобачевского были проведены итальянским математиком Бельтрами (1835-1900). В 1868г. он построил поверхность в евклидовом пространстве – псевдосферу которая получается вращением трактрисы вокруг оси OZ. Псевдосфера – это поверхность постоянной отрицательной кривизны. [12]

    Модель Пуанкаре плоскости Лобачевского

    Анри Пуанкаре в 1882г. построил конформное отображение плоскости Лобачевского на открытую полуплоскость Евклида, тем самым, получив новую модель плоскости Лобачевского.

    Треугольник в неевклидовой геометрииРоль прямых плоскости Лобачевского (неевклидовых прямых) будут выполнять:

    1) евклидовы полупрямые, перпендикулярные прямой l (рис.72) без точки пересечения с l .

    2) евклидовы полуокружности, перпендикулярные абсолюту, т.е. с центром на прямой l.

    На приведенном ниже рисунке 1 изображены четыре модели геометрии Лобачевского: модель Пуанкаре в верхней полуплоскости, модель Пуанкаре в круге (верхний ряд), модель Клейна (под моделью Пуанкаре в круге) и модель на верхней полусфере. Также в каждой из моделей нарисована кратчайшая сеть, соединяющая три заданных точки, и проведены некоторые дополнительные построения. Соответствие между объектами задано цветом. Так прямые в моделях Пуанкаре (верхний ряд) представляют собой окружности, перпендикулярные так называемому абсолюту – прямой или окружности, ограничивающей модель. В модели Клейна прямые – это прямолинейные хорды. Наконец, в модели верхней полусферы прямые представляют собой параллели, перпендикулярные абсолюту – граничному экватору. [12]

    Треугольник в неевклидовой геометрии

    Видео:Неевклидова геометрия. Часть 1. История математикиСкачать

    Неевклидова геометрия. Часть 1. История математики

    ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ГЕОМЕТРИИ ЛОБАЧЕВСКОГО

    Видео:Мнимая ошибка, над которой ломали голову 2 000 лет [Veritasium]Скачать

    Мнимая ошибка, над которой ломали голову 2 000 лет [Veritasium]

    1. Применение в повседневной жизни.

    Сам Лобачевский применял неевклидову геометрию для вычисления определенных интегралов при нахождении длины, площади или объема фигуры в своей геометрии. Но применение новых знаний не ограничилось математикой. Была установлена связь геометрии Лобачевского с физикой, а именно кинематикой – специальной (частной) теории относительности. Эта связь основана на том, что равенство,
    выражающее закон распространения света x 2 + y 2 + z 2 = c 2 t 2 при делении на t 2 , даёт Треугольник в неевклидовой геометрии– уравнение сферы в пространстве с координатами vx , vy , vz – составляющими скорости по осям х, у, z (в «пространстве скоростей»). [ 6 ] Во-вторых, геометрия Лобачевского используется в астрономии: при описании голографической Вселенной или черных дыр. [ 7 ]

    Интересно применение в игровой индустрии: игра «Жизнь» (модель зарождения жизни во «Вселенной») [ 9 ] или HyperRogue (гибрид паззла и рогалика на гиперболической плоскости). [ 3 ]

    Применяется геометрия Лобачевского в живописи. В 2013 году в московском Музее современного искусства прошла выставка Маурица Корнелиса Эшера. Нидерландский художник-график известен благодаря своим работам, где он использует различные математические понятия, приемы и теории: пределы, ленты Мебиуса, геометрию Лобачевского. Заинтересовали работы-иллюзии и орнаменты. [ 2 ]

    Треугольник в неевклидовой геометрии Треугольник в неевклидовой геометрии

    В 2015 году в Центральном зале центра дизайна ARTPLAY прошла еще одна не менее интересная выставка «Ван Гог. Ожившие полотна (Van Gogh Alive)». На его картинах отсутствует ровный фон, геометрия вангоговского пространства подчиняется законам, которые только предстояло открыть учёным 19-го столетия. Более того, во время просмотра посетители слушали классическую музыку. [ 1 ]

    Треугольник в неевклидовой геометрии

    Использование геометрии Лобачевского в искусстве не ограничивается живописью. Творчество Фрэнка Гери тому доказательство. Он продемонстрировал возможности современных технологий проектирования. Его здания похожи друг на друга словно детали «конструктора из титана», но «мнет и гнет» он их каждый раз по-другому. В этом заключается уникальность дизайна построенных объектов. [ 11 ]

    Треугольник в неевклидовой геометрии Треугольник в неевклидовой геометрии

    Спутниковые навигационные системы (GPS и ГЛОНАСС) состоят из двух частей: орбитальная группировка из 24-29 спутников, равномерно расположенных вокруг Земли, и управленческий сегмент на Земле, обеспечивающий синхронизацию времени на спутниках и использование ими единой системы координат. На спутниках установлены очень точные атомные часы, а в приемниках (GPS-навигаторах) обычные, кварцевые. В приемниках также есть информация о координатах всех спутников в любой момент времени. Спутники с маленькими интервалами передают сигнал, содержащий данные о времени начала передачи. Получив сигнал от не менее четырех спутников, приемник может скорректировать свои часы и вычислить расстояния до этих спутников по формуле ((время отправки сигнала спутником) – (время приема сигнала от спутника)) х (скорость света) = (расстояние до спутника). Вычисленные расстояния также корректируются по встроенным в приемник формулам. Далее, приемник находит координаты точки пересечения сфер с центрами в спутниках и радиусами, равными вычисленным расстояниям до них. Очевидно, это будут координаты приемника.

    Формулы геометрии Лобачевского также используются в физике высоких энергий, а именно, в расчетах ускорителей заряженных частиц. Гиперболические пространства (т.е. пространства, в которых действуют законы гиперболической геометрии) встречаются и в самой природе. Приведем побольше примеров:

    Геометрия Лобачевского проглядывается в структурах кораллов, в организации клеточных структур у растений, в архитектуре, у некоторых цветков и так далее. Кстати, если вы помните в прошлом выпуске мы рассказывали о шестиугольниках в природе, так вот, в гиперболической природе альтернативой являются семиугольники, которые также широко распространены

    Видео:НЕЕВКЛИДОВА ГЕОМЕТРИЯ - МУДРЕНЫЧ (Евклид "Начала", Общая теория относительности, история на пальцах)Скачать

    НЕЕВКЛИДОВА ГЕОМЕТРИЯ - МУДРЕНЫЧ (Евклид "Начала", Общая теория относительности, история на пальцах)

    2. Примеры решения задач с помощью геометрии Лобачевского.

    Два спутника связи запустили на орбиту. Чтобы понять, пересекаются ли их зоны покрытия, необходимо доказать, что любые две прямые пересекаются.

    В сферической геометрии окружность максимального радиуса называется «прямой» линией.

    Треугольник в неевклидовой геометрии Дано:
    сфера(R;О),
    две прямые на сфере

    Доказать:
    любые прямые пересекаются

    Вторая «прямая» полностью лежит в одной из полусфер, потому что первая «прямая» делит сферу на две половины.

    Поэтому её радиус (r) вторая «прямая» не является прямой => любые две «прямые» пересекаются на сфере, что и требовалось доказать.

    Из-за загрязнения окружающей среды и появления озоновых дыр ученые прогнозировали на западном полушарии Земли потепление. Они описали его приблизительные размеры с использованием параллель и меридиан. Найти сумму углов предполагаемой зоны потепления, чтобы в дальнейшем Треугольник в неевклидовой геометриивысчитать ее точную площадь.

    Найти:
    Сумму углов ΔABC, образованного двумя меридианами и параллелью.

    AC перпендикулярна DF; AB перпендикулярна DF (как меридианы) => угол β и угол α = 90° =>

    ΔABC = угол α + угол β + угол 1 = (90°·2) + 45°= 225°.

    Треугольник в неевклидовой геометрииЗа последние 5 лет одним из самых крупнейших извержений вулкана было извержение Мерапи на острове Ява. В результате извержения, продолжавшегося около двух недель, потоки лавы распространились на пять километров и преобладал юго-восточный ветер. Найти сумму углов территории, пострадавшей от извержения, чтобы вулканологи смогли высчитать ее площадь.

    Дано:
    сфера(R;О),
    сфера разбита на 8 частей (равных) тремя ортогональными прямыми; каждая часть является сферическим треугольником.

    Найти:
    Сумму углов ABC.

    Так как стороны треугольника ортогональны, углы треугольника по 90° => сумма углов ΔABC = 90°· 3 = 270°.

    В модели геометрии Лобачевского в верхней полуплоскости найти радиус (в смысле геометрии Лобачевского) окружности, описанной около треугольника ABC, где A = (2; 6),

    Верно ли, что около любого треугольника на плоскости Лобачевского

    можно описать окружность? Верно ли это для сферической геометрии?

    Нетрудно заметить, что любая окружность в модели геометрии Лобачевского в верхней полуплоскости является окружностью и в смысле евклидовой геометрии, но не наоборот. Например, если она пересекает Абсолют (т.е. ось абсцисс) под прямым углом, то она является прямой с точки зрения геометрии Лобачевского. Поэтому, для того, чтобы понять, что в геометрии Лобачевского не около любого треугольника можно описать окружность, достаточно взять какой-нибудь треугольник в верхней полуплоскости, описанная окружность которого выходит за ее пределы.

    Легко проверить, что евклидова окружность, описанная около треугольника ABC, задается уравнением:

    (x — 7) 2 + (y — 6) 2 = 25;

    Очевидно, что она будет также и описанной окружностью с точки зрения геометрии Лобачевского, поскольку она целиком содержится в верхней полуплоскости. Найдем теперь ее центр. Пусть M = (7; 11) и N = (7; 1) — две диаметрально противоположные точки этой окружности, найдем середину O отрезка MN. Естественно выбирать именно этот диаметр рассматриваемой окружности, поскольку в метрики

    Лобачевского совсем просто вычисляется расстояние между точками с одинаковой ординатой:

    d (( x 0 ; y 1 ); ( x 1 ; y 2 )) = Треугольник в неевклидовой геометрии

    Пусть O = (7; y), тогда для радиуса r нашей окружности имеют место равенства:

    Треугольник в неевклидовой геометрии

    откуда Треугольник в неевклидовой геометриии, соответственно, Треугольник в неевклидовой геометрии

    Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

    7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

    Тесты

    В каждом задании выберите один из четырёх вариантов ответа.

    1. Авторы неевклидовой геометрии

    A. Лобачевский и Я. Больяи

    B. Лобачевский, Больяи и Гаусс

    C. Ламберт и Гаусс

    D. Лобачевский и Ламберт

    2. В геометрии Лобачевского сумма углов любого треугольника

    A. меньше Треугольник в неевклидовой геометрии

    B. больше Треугольник в неевклидовой геометрии

    C. больше Треугольник в неевклидовой геометрии

    D. больше Треугольник в неевклидовой геометрии, но меньше Треугольник в неевклидовой геометрии

    3.В геометрии Лобачевского имеет место четвертый признак равенства треугольников:

    A. если углы одного треугольника соответственно равны углам другого треугольника, то эти треугольники равны.

    B. две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу ними другого треугольника

    C. сторона и два прилежащих к ней угла одного треугольника равны соответственно стороне и двум прилежащим к ней углам другого треугольника

    D. три стороны одного треугольника равны соответственно трем сторонам другого треугольника

    4. Выберите свойства параллельных прямых на плоскости Лобачевского:

    A. две параллельные прямые на плоскости Лобачевского имеют общий перпендикуляр

    B. понятие параллельных прямых на плоскости Лобачевского транзитивно в данном направлении

    C. понятие параллельных прямых на плоскости Лобачевского симметрично в данном направлении

    D. расстояние между параллельными прямыми бесконечно убывает в направлении параллельности и неограниченно растет в противоположном направлении

    5. Выберите свойства свехпараллельных прямых на плоскости Лобачевского:

    A. две параллельные прямые на плоскости Лобачевского имеют общий перпендикуляр

    B. понятие параллельных прямых на плоскости Лобачевского транзитивно в данном направлении

    C. понятие параллельных прямых на плоскости Лобачевского симметрично в данном направлении

    D. расстояние между параллельными прямыми бесконечно убывает в направлении параллельности и неограниченно растет в противоположном направлении

    6. Если прямые Треугольник в неевклидовой геометрии Треугольник в неевклидовой геометрии Лобачевского составляют с третьей прямой Треугольник в неевклидовой геометрии соответственно равные углы, то прямые Треугольник в неевклидовой геометрии Треугольник в неевклидовой геометрии

    A. прямые Треугольник в неевклидовой геометрии Треугольник в неевклидовой геометриипараллельны

    B. прямые Треугольник в неевклидовой геометрии Треугольник в неевклидовой геометриисверхпараллельны

    C. прямые Треугольник в неевклидовой геометрии Треугольник в неевклидовой геометриипересекаются

    D. прямые Треугольник в неевклидовой геометрии Треугольник в неевклидовой геометрииравноудалены от Треугольник в неевклидовой геометрии

    7. На плоскости Лобачевского существует

    A. три вида пучков прямых: пучок параллельных прямых в заданном направлении; пучок пересекающихся прямых; пучок сверхпараллельных прямых;

    B. два вида пучков прямых: пучок параллельных и пучок пересекающихся прямых;

    C. два вида пучков прямых: пучок параллельных и пучок сверхпараллельных прямых;

    D. два вида пучков прямых: пучок пересекающихся и пучок сверхпараллельных прямых;

    8. Плоскость Лобачевского реализуется в евклидовом пространстве

    A. только в модели Пуанкаре на полуплоскости;

    B. в модели Пуанкаре в круге, в модели Пуанкаре на полуплоскости; в модели Бельтрами –Клейна в круге; в модели на псевдосфере; в модели на одной полости двуполостного гиперболоида;

    C. в модели Бельтрами –Клейна в круге; в модели на псевдосфере; в модели на одной полости двуполостного гиперболоида;

    D. только в модели на псевдосфере;

    9. В какой из геометрий верно утверждение: существует прямая линия, перпендикулярная к одной из двух параллельных прямых и параллельная к другой?

    A. только в геометрии Евклида

    B. только в абсолютной геометрии

    C. только в геометрии Лобачевского

    D. только в геометрии Римана

    10. В какой из геометрий не существует понятия «подобие фигур»?

    🎥 Видео

    Треугольники. 7 класс.Скачать

    Треугольники. 7 класс.

    Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать

    Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)

    Математика это не ИсламСкачать

    Математика это не Ислам

    Задача, которую исключили из экзамена в АмерикеСкачать

    Задача, которую исключили из экзамена в Америке

    Всегда недолюбливал геометрию #школа #shortsСкачать

    Всегда недолюбливал геометрию #школа #shorts
    Поделиться или сохранить к себе: