Свойства острых углов треугольника

Острый угол в прямоугольном треугольнике
Содержание
  1. Свойства острых углов в прямоугольном треугольнике
  2. Как найти острый угол в прямоугольном треугольнике
  3. Определение синуса, косинуса, и тангенса острого угла прямоугольного треугольника
  4. Треугольник. Формулы и свойства треугольников.
  5. Типы треугольников
  6. По величине углов
  7. По числу равных сторон
  8. Вершины углы и стороны треугольника
  9. Свойства углов и сторон треугольника
  10. Теорема синусов
  11. Теорема косинусов
  12. Теорема о проекциях
  13. Формулы для вычисления длин сторон треугольника
  14. Медианы треугольника
  15. Свойства медиан треугольника:
  16. Формулы медиан треугольника
  17. Биссектрисы треугольника
  18. Свойства биссектрис треугольника:
  19. Формулы биссектрис треугольника
  20. Высоты треугольника
  21. Свойства высот треугольника
  22. Формулы высот треугольника
  23. Окружность вписанная в треугольник
  24. Свойства окружности вписанной в треугольник
  25. Формулы радиуса окружности вписанной в треугольник
  26. Окружность описанная вокруг треугольника
  27. Свойства окружности описанной вокруг треугольника
  28. Формулы радиуса окружности описанной вокруг треугольника
  29. Связь между вписанной и описанной окружностями треугольника
  30. Средняя линия треугольника
  31. Свойства средней линии треугольника
  32. Периметр треугольника
  33. Формулы площади треугольника
  34. Формула Герона
  35. Равенство треугольников
  36. Признаки равенства треугольников
  37. Первый признак равенства треугольников — по двум сторонам и углу между ними
  38. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  39. Третий признак равенства треугольников — по трем сторонам
  40. Подобие треугольников
  41. Признаки подобия треугольников
  42. Первый признак подобия треугольников
  43. Второй признак подобия треугольников
  44. Третий признак подобия треугольников
  45. Остроугольный треугольник — виды, свойства и признаки
  46. Виды, признаки и свойства остроугольных треугольников
  47. Равносторонний треугольник
  48. Разносторонний треугольник
  49. Равнобедренный остроугольный треугольник
  50. Равнобедренный тупоугольный треугольник

Видео:7 класс, 31 урок, Теорема о сумме углов треугольникаСкачать

7 класс, 31 урок, Теорема о сумме углов треугольника

Свойства острых углов в прямоугольном треугольнике

Острый угол в прямоугольном треугольнике — угол,
градусная мера которого менее 90º.

  1. Если известны 2 угла: чтобы найти острый угол надо из 90º
    вычесть известный угол.
  2. Катет прямоугольного треугольника, лежащий против острого угла в 30º,
    равен половине гипотенузы.
  3. Если в прямоугольном треугольнике острые углы равны, значит и катеты равны.

Видео:Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

Как найти острый угол в прямоугольном треугольнике

Свойства острых углов треугольника

  1. Если известны 2 угла: чтобы найти острый угол надо из 90º
    вычесть известный угол.
  2. Если известны катет a и катет b: чтобы найти острый угол надо
    использовать формулу тангенса.
  3. Если известна гипотенуза c и катет a: чтобы найти острый угол надо
    использовать формулу синуса.
  4. Если известна гипотенуза c и катет b: чтобы найти острый угол надо
    использовать формулу косинуса.

Видео:Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

Определение синуса, косинуса, и тангенса острого угла прямоугольного треугольника

Синусом острого угла прямоугольного треугольника называется
отношение противолежащего этому углу катета к гипотенузе.

Косинусом острого угла прямоугольного треугольника называется
отношение прилежащего к этому углу катета к гипотенузе.

Тангенсом острого угла прямоугольного треугольника называется
отношение противолежащего этому углу катета к прилежащему катету.

Видео:Свойства прямоугольного треугольника. 7 класс.Скачать

Свойства прямоугольного треугольника. 7 класс.

Треугольник. Формулы и свойства треугольников.

Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Типы треугольников

По величине углов

Свойства острых углов треугольника

Свойства острых углов треугольника

Свойства острых углов треугольника

По числу равных сторон

Свойства острых углов треугольника

Свойства острых углов треугольника

Свойства острых углов треугольника

Видео:ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого углаСкачать

ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого угла

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Свойства острых углов треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:Геометрия Найдите острый угол между биссектрисами острых углов прямоугольного треугольникаСкачать

Геометрия Найдите острый угол между биссектрисами острых углов прямоугольного треугольника

Медианы треугольника

Свойства острых углов треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:Геометрия 7 класс (Урок№23 - Сумма углов треугольника.)Скачать

Геометрия 7 класс (Урок№23 - Сумма углов треугольника.)

Биссектрисы треугольника

Свойства острых углов треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:Прямоугольный треугольник: катеты, гипотенуза, свойство острых угловСкачать

Прямоугольный треугольник: катеты, гипотенуза, свойство острых углов

Высоты треугольника

Свойства острых углов треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольникаСкачать

8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольника

Окружность вписанная в треугольник

Свойства острых углов треугольника

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Окружность описанная вокруг треугольника

Свойства острых углов треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)

Связь между вписанной и описанной окружностями треугольника

Видео:7 класс, 35 урок, Некоторые свойства прямоугольных треугольниковСкачать

7 класс, 35 урок, Некоторые свойства прямоугольных треугольников

Средняя линия треугольника

Свойства средней линии треугольника

Свойства острых углов треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:Геометрия за 6 минут — Сумма углов треугольника и Внешний УголСкачать

Геометрия за 6 минут — Сумма углов треугольника и Внешний Угол

Периметр треугольника

Свойства острых углов треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:Решение задач (сумма острых углов прямоугольного треугольника)Скачать

Решение задач (сумма острых углов прямоугольного треугольника)

Формулы площади треугольника

Свойства острых углов треугольника

Формула Герона

S =a · b · с
4R

Видео:Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Видео:Сравнение углов. Виды углов. Чертежный треугольник. 5 класс.Скачать

Сравнение углов. Виды углов. Чертежный треугольник. 5 класс.

Подобие треугольников

Свойства острых углов треугольника

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Урок 22. Свойство катета прямоугольного треугольника, лежащего против угла в 30° (7 класс)Скачать

Урок 22.  Свойство катета прямоугольного треугольника, лежащего против угла в 30° (7 класс)

Остроугольный треугольник — виды, свойства и признаки

Одна из центральных тем на уроках геометрии – остроугольный треугольник, составная часть своих более сложных аналогов и иных тригонометрических форм.

Азы изучения точной науки начинаются с рассмотрения уникальной комбинации из трех сторон и острых углов.

Видео:7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»Скачать

7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»

Виды, признаки и свойства остроугольных треугольников

Трехсторонние фигуры разделяются на множество подвидов и категорий.

Общая классификация по наибольшему углу делит их на 3 группы:

Свойства острых углов треугольника

Они располагают как общими для формы с тремя сторонами характеристиками, так и специфическими признаками.

3 угла, сумма которых равна 180°, (величина каждого меньше 90°) и 3 стороны;

сумма длин любых двух сторон больше оставшейся третьей.

Свойства остроугольной фигуры определяются вспомогательными геометрическими линиями, всегда находящимися внутри него:

1. Биссектрисы, делящие углы пополам, являются центром, вокруг которого можно нарисовать вписанную окружность.

Свойства острых углов треугольника

2. Высоты пересекаются в одной точке, образуя ортоцентр.

Свойства острых углов треугольника

3. Медианы в точке пересечения пролегают в пропорции 2:1 (2 трети до центра и 1 треть после).

Свойства острых углов треугольника

Уникальные особенности зависят от разновидностей фигуры.

Видео:1698 один из острых углов прямоугольного треугольника равен 57 градусовСкачать

1698 один из острых углов прямоугольного треугольника равен 57 градусов

Равносторонний треугольник

Свойства острых углов треугольника

«Идеальный» правильный треугольник, облегчающий решение задач. Определение, форма и свойства данной геометрической формы исходят из названия — все углы равны 60°, а стороны равны друг другу.

Полное равенство придает и другую особенность: медианы, биссектрисы и высоты полностью совпадают.

Свойства острых углов треугольника

Разносторонний треугольник

Свойства острых углов треугольника

Наиболее часто встречаемый на чертежах в геометрии вариант, один из самых трудноразрешимых видов. Разносторонними бывают и прямоугольные, и тупоугольные фигуры.

Уникальных отличий не имеет, только общие:

все параметры имеют разные значения;

совпадений между вспомогательными линиями нет.

Равнобедренный остроугольный треугольник

Свойства острых углов треугольника

Здесь при основании (стороне, не равной остальным) находятся равные друг другу 2 стороны и 2 угла. Выглядит как вытянутый в одну сторону равносторонний треугольник.

проведенная к основанию линия – и биссектриса, и высота, и медиана;

вспомогательные линии из крайних точек при основании совпадают.

Равнобедренный тупоугольный треугольник

Свойства острых углов треугольника

Пусть он и называется равнобедренным, но из-за наличия угла более 90° не является остроугольным и является представителем другой группы.

Начертить его сложнее (рисунок следует начинать с основания и 2 острых углов и уже после создавать тупой), но процесс решения и изучения прост.

Отличие у него одно – точка пересечения двух высот, проведенных от углов при основании, выходит за периметр треугольника. Чтобы ее обозначить, необходимо нарисовать «продолжения» равнобедренных линий. Все остальные свойства совпадают.

В ключевых и фундаментальных разделах математики именно треугольник является основой для доказательства многих теорем и помощью в решении множества задач. Твердое знание его свойств откроет путь к успехам в расчетах, вычислениях, оформлении чертежей и фото в проектных работах.

Поделиться или сохранить к себе: