Стороны треугольника 45 градусов

Как найти стороны прямоугольного треугольника
Содержание
  1. Онлайн калькулятор
  2. Найти гипотенузу (c)
  3. Найти гипотенузу по двум катетам
  4. Найти гипотенузу по катету и прилежащему к нему острому углу
  5. Найти гипотенузу по катету и противолежащему к нему острому углу
  6. Найти гипотенузу по двум углам
  7. Найти катет
  8. Найти катет по гипотенузе и катету
  9. Найти катет по гипотенузе и прилежащему к нему острому углу
  10. Найти катет по гипотенузе и противолежащему к нему острому углу
  11. Найти катет по второму катету и прилежащему к нему острому углу
  12. Найти катет по второму катету и противолежащему к нему острому углу
  13. Решение треугольников онлайн
  14. Решение треугольника по трем сторонам
  15. Решение треугольника по двум сторонам и углу между ними
  16. Решение треугольника по стороне и любым двум углам
  17. Прямоугольные треугольники
  18. Некоторые свойства прямоугольного треугольника:
  19. Соотношение между сторонами и углами в прямоугольном треугольнике:
  20. Значения тригонометрических функций некоторых углов:
  21. 📺 Видео

Видео:Геометрия ОГЭ задача Теорема синусовСкачать

Геометрия ОГЭ задача Теорема синусов

Онлайн калькулятор

Стороны треугольника 45 градусов

Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • для гипотенузы (с):
    • длины катетов a и b
    • длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
  • для катета:
    • длину гипотенузы (с) и длину одного из катетов
    • длину гипотенузы (с) и прилежащий к искомому катету (a или b) острый угол (β или α, соответственно)
    • длину гипотенузы (с) и противолежащий к искомому катету (a или b) острый угол (α или β, соответственно)
    • длину одного из катетов (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину одного из катетов (a или b) и противолежащий к нему острый угол (α или β, соответственно)

Введите их в соответствующие поля и получите результат.

Найти гипотенузу (c)

Найти гипотенузу по двум катетам

Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?

Формула

следовательно: c = √ a² + b²

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:

c = √ 3² + 4² = √ 9 + 16 = √ 25 = 5 см

Найти гипотенузу по катету и прилежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?

Формула
Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:

c = 2 / cos(60) = 2 / 0.5 = 4 см

Найти гипотенузу по катету и противолежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?

Формула
Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:

c = 2 / sin(30) = 2 / 0.5 = 4 см

Найти гипотенузу по двум углам

Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.

Найти катет

Найти катет по гипотенузе и катету

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:

a = √ 5² — 4² = √ 25 — 16 = √ 9 = 3 см

Найти катет по гипотенузе и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?

Формула
Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:

b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см

Найти катет по гипотенузе и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:

a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см

Найти катет по второму катету и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?

Формула
Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:

b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см

Найти катет по второму катету и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:

Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

По силам каждому ★ Найдите стороны треугольника на рисунке

Решение треугольников онлайн

С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.

Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:

  1. Три стороны треугольника.
  2. Две стороны треугольника и угол между ними.
  3. Две стороны и угол противостоящий к одному из этих сторон треугольника.
  4. Одна сторона и любые два угла.

Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.

Видео:№1027. Найдите стороны треугольника ABC, если ∠A=45°, ∠C=30°, а высота AD равна 3 м.Скачать

№1027. Найдите стороны треугольника ABC, если ∠A=45°, ∠C=30°, а высота AD равна 3 м.

Решение треугольника по трем сторонам

Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем Стороны треугольника 45 градусов.

Стороны треугольника 45 градусов
Стороны треугольника 45 градусов
Стороны треугольника 45 градусов
Стороны треугольника 45 градусов(1)
Стороны треугольника 45 градусов(2)

Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения

Стороны треугольника 45 градусов.

Пример 1. Известны стороны треугольника ABC: Стороны треугольника 45 градусовНайти Стороны треугольника 45 градусов(Рис.1).

Решение. Из формул (1) и (2) находим:

Стороны треугольника 45 градусовСтороны треугольника 45 градусов.
Стороны треугольника 45 градусовСтороны треугольника 45 градусов.
Стороны треугольника 45 градусов, Стороны треугольника 45 градусов.

И, наконец, находим угол C:

Стороны треугольника 45 градусовСтороны треугольника 45 градусов

Видео:Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

Решение треугольника по двум сторонам и углу между ними

Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.

Стороны треугольника 45 градусов

Найдем сторону c используя теорему косинусов:

Стороны треугольника 45 градусов.
Стороны треугольника 45 градусов.

Далее, из формулы

Стороны треугольника 45 градусов.
Стороны треугольника 45 градусов.(3)

Далее из (3) с помощью калькулятора находим угол A.

Поскольку уже нам известны два угла то находим третий:

Стороны треугольника 45 градусов.

Пример 2. Известны две стороны треугольника ABC: Стороны треугольника 45 градусови Стороны треугольника 45 градусов(Рис.2). Найти сторону c и углы A и B.

Решение. Иcпользуя теорму косинусов найдем сторону c:

Стороны треугольника 45 градусов,
Стороны треугольника 45 градусовСтороны треугольника 45 градусовСтороны треугольника 45 градусов.

Из формулы (3) найдем cosA:

Стороны треугольника 45 градусовСтороны треугольника 45 градусов
Стороны треугольника 45 градусов.

Поскольку уже нам известны два угла то находим третий:

Стороны треугольника 45 градусовСтороны треугольника 45 градусов.

Видео:Соотношение сторон треугольника с углами 45-45-90Скачать

Соотношение сторон треугольника с углами 45-45-90

Решение треугольника по стороне и любым двум углам

Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.

Стороны треугольника 45 градусов

Так как, уже известны два угла, то можно найти третий:

Стороны треугольника 45 градусов.

Далее, для находждения сторон b и c воспользуемся тероемой синусов:

Стороны треугольника 45 градусов, Стороны треугольника 45 градусов.
Стороны треугольника 45 градусов, Стороны треугольника 45 градусов.

Пример 3. Известна одна сторона треугольника ABC: Стороны треугольника 45 градусови углы Стороны треугольника 45 градусов(Рис.3). Найти стороны b и c и угол С.

Решение. Поскольку известны два угла, то легко можно найти третий угол С:

Стороны треугольника 45 градусовСтороны треугольника 45 градусов

Найдем сторону b. Из теоремы синусов имеем:

Стороны треугольника 45 градусов
Стороны треугольника 45 градусов

Найдем сторону с. Из теоремы синусов имеем:

Видео:Треугольники с углами 45, 45 и 90 градусовСкачать

Треугольники с углами 45, 45 и 90 градусов

Прямоугольные треугольники

Прямоугольный треугольник — это треугольник, у которого один угол прямой (равен $90$ градусов).

Катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.

Некоторые свойства прямоугольного треугольника:

1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.

2. Если в прямоугольном треугольнике один из острых углов равен $45$ градусов, то этот треугольник равнобедренный.

3. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)

4. Катет прямоугольного треугольника, лежащий напротив угла в $60$ градусов, равен малому катету этого треугольника, умноженному на $√3$.

5. В равнобедренном прямоугольном треугольнике гипотенуза равна катету, умноженному на $√2$

6. Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности $(R)$

7. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями, которых являются катеты данного треугольника.

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В$: $АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А$: $ВС$ — противолежащий катет; $АС$ — прилежащий катет.

1. Синусом $(sin)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

2. Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

3. Тангенсом $(tg)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

4. Котангенсом $(ctg)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.

В прямоугольном треугольнике $АВС$ для острого угла $В$:

5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.

6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.

7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.

Значения тригонометрических функций некоторых углов:

$α$$30$$45$$60$
$sinα$$/$$/$$/$
$cosα$$/$$/$$/$
$tgα$$/$$1$$√3$
$ctgα$$√3$$1$$/$

Площадь прямоугольного треугольника равна половине произведения его катетов

В треугольнике $АВС$ угол $С$ равен $90$ градусов, $АВ=10, АС=√$. Найдите косинус внешнего угла при вершине $В$.

Так как внешний угол $АВD$ при вершине $В$ и угол $АВС$ смежные, то

Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. Следовательно, для угла $АВС$:

Катет $ВС$ мы можем найти по теореме Пифагора:

Подставим найденное значение в формулу косинуса

В треугольнике $АВС$ угол $С$ равен $90$ градусов, $sin⁡A=/, AC=9$. Найдите $АВ$.

Распишем синус угла $А$ по определению:

Так как мы знаем длину катета $АС$ и он не участвует в записи синуса угла $А$, то можем $ВС$ и $АВ$ взять за части $4х$ и $5х$ соответственно.

Применим теорему Пифагора, чтобы отыскать $«х»$

Так как длина $АВ$ составляет пять частей, то $3∙5=15$

В прямоугольном треугольнике с прямым углом $С$ и высотой $СD$:

Квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота поделила гипотенузу.

В прямоугольном треугольнике : квадрат катета равен произведению гипотенузы на проекцию этого катета на гипотенузу.

Произведение катетов прямоугольного треугольника равно произведению его гипотенузы на высоту, проведенную к гипотенузе.

📺 Видео

Построение углов заданной градусной мерыСкачать

Построение углов заданной градусной меры

Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

Измерение угла с помощью транспортираСкачать

Измерение угла с помощью транспортира

ЗНАЧЕНИЯ СИНУСА, КОСИНУСА И ТАНГЕНСА 30, 45 И 60 ГРАДУСОВСкачать

ЗНАЧЕНИЯ СИНУСА, КОСИНУСА И ТАНГЕНСА 30, 45 И 60 ГРАДУСОВ

Задача 6 №27591 ЕГЭ по математике. Урок 59Скачать

Задача 6 №27591 ЕГЭ по математике. Урок 59

Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Геометрия Одна из сторон треугольника равна a, прилежащие к ней углы равны 45 и 60. Найдите высотуСкачать

Геометрия Одна из сторон треугольника равна a, прилежащие к ней углы равны 45 и 60. Найдите высоту

Три квадрата и 45 градусовСкачать

Три квадрата и 45 градусов

Найти угол между биссектрисой и высотойСкачать

Найти угол между биссектрисой и высотой

Скрытые возможности обычного угольника! А вы их знали?Скачать

Скрытые возможности обычного угольника! А вы их знали?

ОГЭ. Геометрия. 1 часть. Теорема синусов.Скачать

ОГЭ. Геометрия.  1 часть. Теорема синусов.

Теорема Пифагора для чайников)))Скачать

Теорема Пифагора для чайников)))

Тригонометрия: значения синуса, косинуса и тангенса для углов 30, 45 и 60 градусовСкачать

Тригонометрия: значения синуса, косинуса и тангенса для углов 30, 45 и 60 градусов
Поделиться или сохранить к себе: