Пуск насосов звезда треугольник

Способы пуска дополнительных насосов в насосных станциях повышения давления

Задача повышения давления в насоных установках для повышения давления решается использованием двух основных координат управления: каскадного пуска и останова дополнительных насосов, а также частотного регулирования одним или несколькими насосами. Пуск и останов дополнительных насосов обеспечивает поддержание давления напорной магистрали в заданных пределах, частотное регулирование обеспечивает поддержание давления на заданном уровне.

Следует отметить, что останов каждого насоса, не управляемого преобразователем частоты или устройством плавного пуска, производится прямым отключением его от сети питающего напряжения или в режиме «самовыбега». Такое отключение, как правило, не приводит к броскам тока в сетях питающих напряжений и заметным гидроударам. Однако с увеличением статического напора прямые отключения насосов могут вызвать гидроудары, определяемые соотношением Нст/Нф соответственно статического и фиктивного напора установки.

Пуск дополнительных насосов в таком оборудованиии определяет переходные процессы в электрических сетях питающего напряжения, а также в напорных гидравлических магистралях.

Пуск каждого дополнительного насоса может быть произведен следующими способами:

  1. Прямой пуск;
  2. Пуск по схеме «звезда — треугольник»;
  3. Пуск от устройства плавного пуска (УПП);
  4. Пуск от преобразователя частоты (ПЧ).

Рассмотрим каждый из этих способов пуска.

Содержание
  1. 1. Прямой пуск насоса
  2. 2. Пуск насоса по схеме «звезда – треугольник»
  3. 4. Пуск каждого дополнительного насоса от преобразователя частоты
  4. Подключение двигателя “Звездой” и “Треугольником” – схемы и примеры
  5. Зачем нужна схема “Звезда – Треугольник”?
  6. Схемы “Звезда” и “Треугольник”
  7. Какой двигатель можно подключать в “звезду-треугольник”, а какой нет?
  8. 220/380 В
  9. 380/660 В
  10. Звезда / Треугольник: работа схемы
  11. Реализация силовой части схемы
  12. Реализация части управления
  13. Временные диаграммы работы схемы “Звезда-Треугольник”
  14. Реальный пример схемы
  15. Как переключить схему двигателя в “Звезду” и в “Треугольник” вручную
  16. Особенность работы в “Звезде”
  17. Видео
  18. Скачать
  19. В чём отличия схем подключения обмоток электродвигателя звездой и треугольником
  20. Фазные и линейные напряжения
  21. Подключение обмоток электродвигателя по схеме «звезда»
  22. Подключение обмоток электродвигателя по схеме «треугольник»
  23. Сравнения схем подключения между собой
  24. Способы переключения схем «звезда»-«треугольник»
  25. Видео

1. Прямой пуск насоса

Производится непосредственным включением электродвигателя насоса в сеть питающего напряжения. Преимущества данного способа пуска: низкие аппаратные затраты, высокая надежность. Основные недостатки:

  • в момент подключения двигателя к сети при нулевой скорости вращении и, соответственно, скольжении S=1 в обмотке статора возникает ток короткого замыкания I1кз, в 5…7 раз превышающий номинальный ток двигателя (рис.4) [2];
  • наличие гидроударов в напорной магистрали.

Снижение гидроударов в напорной магистрали может быть реализовано пуском насоса на закрытую задвижку с последующим постепенным ее открытием, однако в этом случае возрастают аппаратные затраты на задвижку, редуктор которой должен иметь сервис – фактор не менее 1,8 [4], что приводит к удорожанию системы управления насосной станцией.

Осциллограмма значения активного тока Iа при прямом пуске насоса мощностью 11 кВт на закрытую задвижку приведена на рис.1

Пуск насосов звезда треугольник

Рис.1. Осциллограмма тока при прямом пуске насоса

Осциллограмма (рис. 1) показывает, что импульсы тока в сети питающего напряжения электродвигателя насоса при его прямом пуске даже на закрытую задвижку достигают примерно значения 6,7 номинального тока электродвигателя Iном и составляют не менее 147 А для насоса мощностью Р=11 кВт. При этом длительность импульсов составляет 0,004 секунды.

Осциллограмма изменения давления за насосом при его пуске на закрытую задвижку приведена на рис. 2. Изменение напора в течение короткого промежутка времени — гидроудар при пуске насоса определяется следующими параметрами: повышение напора на 20 метров в течение 0,06 секунды.

Пуск насосов звезда треугольник

Рис.2 Изменение напора за насосом Р=11 кВт при пуске на закрытую задвижку

Прямой пуск дополнительного насоса в ряде случаев производится при наличии параллельно работающего насоса с частотным регулированием. Основными показателями динамики частотного регулирования насоса являются время рампового пуска, в течение которого производится плавный разгон насоса от нулевой до максимальной скорости вращения, а также время рампового останова, в течение которого производится плавный останов насоса от максимальной скорости вращения. Как показывает опыт эксплуатации насосных установок, самая «короткая» рампа, характеризуемая наиболее крутой характеристикой изменения частоты питающего напряжения насоса при его пуске и останове, может быть определена значением не более 10 Гц/с.

В течение времени гидроудара Δt ≤0,06 c преобразователь частоты сможет снизить частоту питающего напряжения на величину не более 0,6 Гц. С учетом наличия схемы фильтрации сигналов датчиков, а также времени реакции схемы ПИД — регулирования, обеспечивающих устойчивость переходных процессов, изменение частоты вращения регулируемого насоса в сторону его уменьшения может быть реализовано только через 0,8…1,2 секунды после возникновения гидроудара.

Таким образом, наличие регулируемого преобразователем частоты насоса не позволяет демпфировать гидроудары, возникающие при прямом пуске дополнительного насоса.

2. Пуск насоса по схеме «звезда – треугольник»

Преимуществом данного способа является возможность безударного пуска насоса из-за снижения пускового момента [2] при понижении питающего напряжения обмоток статора двигателя.

Очевидным недостатком данного способа является увеличения количества коммутационной аппаратуры (рис 3). Пуск с переключением обмоток двигателя может быть реализован только для насосов с фазной обмоткой, рассчитанной на 0,4 кВ.

Пуск насосов звезда треугольник

Рис.3. Пуск насоса по схеме «звезда-треугольник»

Зависимости изменения вращающего момента на валу электродвигателя насоса М и потребляемого активного тока статора I1 от величины скольжения электродвигателя S представлены на рис 4.

При пуске электродвигателя насоса его обмотки подключаются по схеме «звезда» (рис. 3). При этом фазное напряжение на статоре понижается в Пуск насосов звезда треугольникраз. Во столько же раз уменьшается и ток в фазных обмотках двигателя (рис. 4).

Следует учитывать, что электромагнитный момент асинхронного двигателя пропорционален квадрату напряжения сети: Пуск насосов звезда треугольник[2]. Таким образом, снижение питающего напряжения, подаваемого на рабочую обмотку, в Пуск насосов звезда треугольникраза с 380 до 220 В вызовет снижение вращающего момента в 3 раза (М0Δ = 3М0 звезда, рис.4), что, в свою очередь, приводит к увеличению скольжения. Поскольку работа электродвигателя при включении обмоток по схеме «звезда» происходит на неустойчивом участке механической характеристики М=М(S), определяемом значением скольжения Sкр Графики зависимостей момента электропривода насоса и тока обмотки статора от величины скольжения при прямом пуске и пуске по схеме «звезда-треугольник»

Ммакс – максимальное значение момента вращения, соответствующее скольжению Sкр > 0; Мном – номинальное значение момента вращения, соответствующее номинальному скольжению Sном; М0звезда, М0Δ – пусковой момент при включении обмоток электродвигателя насоса соответственно по схеме «звезда» и «треугольник»; I1звезда, I1Δ(I1кз) – значения пускового тока при включении обмоток электродвигателя насоса соответственно по схеме «звезда» и «треугольник» (ток короткого замыкания); I0 — значение тока статора при коммутации обмоток из схемы «звезда» в схему «треугольник» при Тпаузы=0;I1макс – максимальное значение тока статора при S1 Структурная схема пуска дополнительных насосов с использованием ПЧ и софтстартера

Основные недостатки схемы рис. 5а:

  • аппаратная избыточность, повышающая стоимость насосной станции;
  • потеря функции частотного регулирования автоматики управления насосом при его отказе, работающего от ПЧ;
  • снижение показателей надежности за счет увеличения количества УПП;
  • невозможность резервирования отказа УПП;
  • невозможность реализации схемы автоматического чередования всех насосов для обеспечения равномерности выработки их ресурса.
  • увеличение элементов коммутации насосов, снижающее надежность системы управления;
  • отсутствие защиты ПЧ от замыкания его выходных ключей на сеть питающего напряжения, являющегося критичным условием отказа преобразователя.

Общие недостатки схем 5а, 5б:

  • перегрев обмоток электродвигателей при пуске с повышенным скольжением из-за снижения момента вращения, а также из-за несинусоидальности питающего напряжения [3];
  • ограничение количества пусков дополнительных насосов. Так, например, устройства плавного пуска мощностью более 4 кВт обеспечивают не более 20 пусков дополнительных насосов в час длительностью пуска 6…8 секунд из-за перегрева тиристорных ключей. Таким образом, схема 4а позволяет реализовать не более 30 пусков, схема 5б – не более 15 пусков дополнительных насосов в течение часа. При времени пуска первого дополнительного насоса 16…18 секунд, останова первого насоса 12…16 секунд количество пусков и остановов каждого дополнительного насоса может превышать 120 циклов в час при работе системы повышения давления в неустойчивых зонах характеристик [1].

Плавный останов каждого насос от УПП еще более сократит количество циклов пуска каждого насоса в течение часа.

Таким образом, применение УПП в схеме управления приводит к ухудшению точности поддержания давления в напорной магистрали, что, с одной стороны, приводит к потерям передавливания из-за повышения напора [1], с другой стороны — к нежелательному снижению напора в диктующих точках.

4. Пуск каждого дополнительного насоса от преобразователя частоты

Преимуществом данного способа является возможность плавного пуска каждого насоса, обеспечивающего отсутствие бросков тока в сетях питающего напряжения и гидроударов в напорных магистралях.

При реализации данного способа пуска удается минимизировать аппаратные затраты в насосных станциях, обеспечить равномерную выработку ресурса всех насосов, а также функциональное резервирование преобразователя частоты при его отказе прямым пуском и остановом насосов по уровню давления в напорной магистрали.
Структура системы коммутации насосов для схемы управления с одним ПЧ представлена на рис.6.

Пуск насосов звезда треугольник

Рис. 6. Структура системы коммутации насосов с одним ПЧ в схеме управления

Сложность реализации данного способа состоит в том, что пуск каждого дополнительного насоса от преобразователя частоты (ПЧ) для схем управления с количеством ПЧ меньше количества насосов возможен только после переключения регулируемого преобразователем насоса к сети питающего напряжения.

Таким образом, для реализации данного способа пуска насосов необходимо решить две задачи:
а) переключение насоса, управляемого преобразователем частоты, к сети питающего напряжения;
б) пуск следующего по приоритету насоса от преобразователя частоты.

Механическая М=М(S) и электромеханическая I1=I1(S) характеристики электродвигателя насоса при переключении от ПЧ к сети питающего напряжения представлены на рис. 7.

Вращение насоса преобразователем частоты перед подключением к сети производится с номинальными значениями частоты вращения nном, момента Мном при номинальном значении скольжения Sном. При отключении обмоток электродвигателя от преобразователя частоты в момент времени коммутации tк двигатель переходит в генераторный режим, его скольжение изменяет знак и принимает значение -1 I1кз(рис.7).

Для снижения бросков тока подключение электродвигателя насоса к сети питающего напряжения после его отключения от ПЧ целесообразно производить в интервале времени tа≤t≤tб при скольжении -Sа≤-Sк≤-Sб, при этом ток статора приобретает значения I1a≤I1≤I1б. Момент на валу электродвигателя насоса при его подключении с сети питающего напряжения из состояния вращения меняет знак с «-» на «+», при этом его значение не выходит за пределы максимального момента сопротивления в генераторном режиме -Ммакс г и максимального момента вращения в двигательном режиме Ммакс дв в течение интервала времени ta≤t≤tб, что обеспечивает минимальные изменения напора и, соответственно, снижение гидроударов в напорной магистрали при коммутации насосов.

Пуск насосов звезда треугольник

Рис. 7. Механическая М=М(S) и электромеханическая I1=I1(S) характеристики электропривода насоса

Ммакс дв – максимальное значение момента вращения в двигательном режиме, соответствующее значению скольжения Sкр > 0; Мном – номинальное значение момента вращения, соответствующее номинальному скольжению Sном; М0 – пусковой момент при S=1; -Ммакс г – максимальное значение момента сопротивления в генераторном режиме, соответствующее значению скольжения -Sкр > t2-t1 интервала времени способа пуска «звезда – треугольник», поэтому его реализация не требует дополнительных аппаратных затрат.

На рис. 8 представлена осциллограмма фазного напряжения обмотки статора насоса мощностью 11 кВт при его отключении от ПЧ и последующем подключении к сети питающего напряжения. При отключении двигателя от ПЧ он переходит в генераторный режим за счет остаточного намагничивания обмоток статора и инерционного вращения ротора. При этом электромагнитное поле обмоток затухает по мере останова ротора электродвигателя насоса на «самовыбеге».

Пуск насосов звезда треугольник

Рис. 8. Осциллограмма напряжения обмоток электродвигателя насоса Р=11 кВт при отключении питающего напряжения

Осциллограммы активного тока насоса мощностью 11 кВт при его переключении от ПЧ к сети питающего напряжения для разных значений времени переключения представлена на рис. 9.

Пуск насосов звезда треугольник

а) t переключения = 0,20 секунд

Пуск насосов звезда треугольник

б) t переключения = 0,34 секунды

Рис. 9. Переключение от ПЧ к сети питающего напряжения

Анализ осциллограмм показывает, что бросок активного значения тока статорных обмоток насоса при его подключении к сети питающего напряжения после работы от ПЧ уменьшается от значения 3*Iном до значения 1,5Iном при уменьшении времени переключения от 0,2 до 0,34 секунды. На диаграмме рис.7 это соответствует значениям тока статора соответственно I1а и I1б при увеличении времени коммутации от значения tа до значения tб.

После переключения регулируемого ПЧ насоса к сети питающего напряжения пуск следующего по приоритету дополнительного насоса производится от ПЧ по заданной рампе до частоты вращения, определяемой процессом регулирования.

Таким образом, наиболее рациональным способом пуска дополнительных насосов в насосных станциях повышения давления с одним ПЧ в схеме управления является пуск каждого дополнительного насоса от ПЧ после переключения регулируемого насоса из состояния его вращения к сети питающего напряжения.

При этом необходимо выдерживать временные интервалы между отключением насоса от ПЧ и его последующем подключении к сети питающего напряжения. Уменьшение интервала времени коммутации насоса вызовет значительные броски тока в сети питающего напряжения, что приведет к срабатыванию защиты насоса. Увеличение времени коммутации приведет к полному останову насоса и возникновению гидроудара в напорной магистрали при его подключении к сети питающего напряжения. Интервалы времени коммутации определяются мощностью электродвигателя насоса и должны настраиваться при индивидуальной наладке установки повышения давления.

Плавный пуск дополнительных насосов при условии «безударного» включения регулируемого насоса к сети питающего напряжения с использованием кинетической энергии его вращения позволяет уменьшить гидроудары, а также броски тока в электрических сетях, обеспечивая тем самым отсутствие порывов в напорных магистралях, а также надежную работу электротехнического оборудования. Повышение качества переходных процессов в электрических сетях и напорных магистралях для данного способа пуска дополнительных насосов достигается при сокращении аппаратных затрат в насосных станциях повышения давления.

Видео:Пуск электродвигателя, без пускового тока, звезда, треугольник, схема запуска, видео, энергомагСкачать

Пуск электродвигателя, без пускового тока, звезда, треугольник, схема запуска, видео, энергомаг

Подключение двигателя “Звездой” и “Треугольником” – схемы и примеры

Пуск насосов звезда треугольник

Как подключить двигатель по схеме “Звезда-Треугольник”

По схеме подключения двигателей “Звезда-треугольник” написано предостаточно. Но в каждой статье есть неточности и ошибки. Авторы просто переписывают друг у друга. Подозреваю, что большинство из них ни разу в жизни не подключали двигатель, и на практике не смогут отличить “Звезду” от “Треугольника”. Поэтому решил последовать народной мудрости “хочешь сделать хорошо – сделай это сам”, и написать эту статью.

Рассказываю, полагаясь на свой опыт и понимание вопроса. Как всегда, буду давать теорию и показывать, как это выглядит на практике.

Для начала, если кто совсем не в теме, из какой области знаний вообще это всё? Речь идёт об одном из распространенных способов подключения трехфазного асинхронного электродвигателя, при котором обмотки двигателя сначала подключаются к питающей сети по схеме “звезда”, а потом – по схеме “треугольник”. В молодых пытливых умах сразу возникнет вопрос – “Зачем это нужно?” Рассказываю подробно.

Видео:Запуск двигателя по схеме "ЗВЕЗДА/ТРЕУГОЛЬНИК"Скачать

Запуск двигателя по схеме "ЗВЕЗДА/ТРЕУГОЛЬНИК"

Зачем нужна схема “Звезда – Треугольник”?

Корень проблемы кроется в пусковых токах и чрезмерных нагрузках, которые испытывает двигатель, когда на него подают питание напрямую. Да что там двигатель – весь привод при пуске скрежещет и содрогается!

ВАЖНО! Если дочитали досюда, ознакомьтесь с моей статьёй про пусковые токи. Там очень подробно о том, откуда они берутся, как их узнать, посчитать и измерить.

  • Особенно это критично там, где нет понижающей передачи – редуктора или ремня на шкивах.
  • Особенно это важно там, где на валу двигателя насажено что-то массивное – крыльчатка или центрифуга.
  • Особенно это значимо там, где мощность двигателя – более 5 кВт, а скорость вращения большая (3000 об/мин).

Пуск насосов звезда треугольник

Вот такие кабанчики не любят, когда их включают в сеть напрямую

Привод отличается от двигателя, как колесо от покрышки и как пускатель от контактора.

Видео:Как работает пусковой переключатель со звезды на треугольникСкачать

Как работает пусковой переключатель со звезды на треугольник

Схемы “Звезда” и “Треугольник”

У любого классического трехфазного двигателя есть три обмотки статора. Они могут иметь разную конфигурацию в пространстве, дополнительные выводы, но их три.

Пуск насосов звезда треугольник

Схема обмоток статора с выводами для трехфазного асинхронного двигателя

Как подключить все эти 6 выводов, если у нашего источника питания всего 3 фазы?

На ум пришла статья про включение транзисторных датчиков. Там похожая ситуация – у датчика три вывода, а у нагрузки два…

Это простейшая логическая задача, у которой есть два решения – “Звезда” и “Треугольник”:

Пуск насосов звезда треугольник

Схема соединения обмоток статора “звездой”

Пуск насосов звезда треугольник

Схема соединения обмоток статора “треугольником”

В результате имеем у каждой схемы три вывода, которые можно подключать к источнику питания. А вот почему напрямую подключать не всегда возможно, об этом статья.

Эти схемы также имеют названия “Delta” и “Star“, и могут обозначаться на схемах как D и S. Но чаще обозначение идёт от вида схем – Δ и Υ. Или D и Y.

На обратной крышке борно обычно указывают схемы подключения и обозначения выводов:

Пуск насосов звезда треугольник

Схемы подключения выводов двигателя: Звезда и Треугольник. Отличия видны сразу

По по схемам мы плотно пройдёмся ниже.

И ещё немного теории.

Мощность на валу при подаче номинального напряжения будет одинакова хоть в Звезде, хоть в Треугольнике. А токи разные, ведь P=UI. Это происходит потому, что Напряжение питания в этих схемах отличается в √3 раз, ток – тоже. В “звезде” напряжение питания двигателя (линейное) больше номинала катушки, а в “треугольнике” ток питания двигателя больше тока катушки в 1,73 раза.

Другими словами, если “базовое” рабочее напряжение катушки равно 220 В, то напряжение в “Звезде” будет 1,73 · 220 = 380 В. Другими словами, Uл=1,73Uф, где Uф – это номинальное напряжение катушки, Uл – номинальное напряжение питания. Для треугольника ситуация повторяется, но только для тока.

Таким образом, если написано одно из напряжений, можно легко узнать другое напряжение и ток:

Пуск насосов звезда треугольник

Указано напряжение только в треугольнике 400 В

Вот этот же двигатель, вид на клеммы в коробке:

Пуск насосов звезда треугольник

Подключение обмоток статора треугольником – клеммы двигателя

В данном случае на шильде приведён только треугольник, но чудес не бывает – этот двигатель может работать и в звезде, главное переключить правильно обмотки. Напряжение “Звезды” будет 1,73 · 400 = 690 В, ток в то же число меньше.

Кто хочет копнуть поглубже – в конце выложу для скачивания умные книги.

Видео:Пуск асинхронного двигателя. Прямой пуск, звезда/треугольник, УПП, ПЧ. В чем разница?Скачать

Пуск асинхронного двигателя. Прямой пуск, звезда/треугольник, УПП, ПЧ. В чем разница?

Какой двигатель можно подключать в “звезду-треугольник”, а какой нет?

Двигатели наша (и не наша) промышленность выпускает разные. Но наиболее ходовые у нас (большинство читателей подтвердит) – низковольтные, для работы в сетях 0,4 кВ 50 Гц. Мы будем рассматривать как раз такие асинхронники. Они бывают на 2 вида напряжения – 220/380 и 380/660 В.

В чем отличия? В номинальных напряжениях питания. Первое число – это “треугольник”, второе – “звезда”. Такое разделение идёт в основном от мощности, “граница” проходит примерно по 4 кВт.

Бывают номиналы на новый стандарт 230/400 или 240/440 В, но это не так важно.

Как видим, оба вида имеют вариант подключения 380 В. В первом случае для этого нужно собрать схему “звезда”, во втором – “треугольник”.

Жаль, но тут возникла путаница, и нужно об этом помнить: Напряжения на двигателе обозначаются как “Треугольник/Звезда”, а схема, о которой речь – “Звезда/Треугольник”. В любом случае – номинальное напряжение в “Звезде” всегда больше в √3 раз!

Подробнее рассмотрим работу на этих напряжениях.

220/380 В

Вариант с низкими напряжениями 220/380 можно подключать на 220 В только в однофазную сеть через фазосдвигающий конденсатор либо от однофазного преобразователя частоты. И только в “Треугольнике”! А 380 В – можно подключать в трехфазную сеть через контактор, либо УПП, либо частотник только в “Звезде”! Важно, что такие двигатели для работы в схеме “Звезда/Треугольник” использовать нельзя!

Пуск насосов звезда треугольник

Двигатель на 220/380 В. Напряжения питания при включении по схемам “Звезда” и “Треугольник”

Центральная точка звезды, обозначенная “0”, может быть подключена к нейтрали N, если она, конечно, есть. Но этого никто никогда не делает – ток по этому проводу будет мизерный, ибо двигатель – нагрузка симметричная.

Реальные примеры движков 220-380:

Пуск насосов звезда треугольник

Двигатель на 220/380 В, который на 380 В можно подключать только в “Звезду”

Пуск насосов звезда треугольник

Шильдик электродвигателя на напряжение 220 – 380 В. Для схемы “Звезда-Треугольник” не подходит.

Как будет выглядеть подключение подобного двигателя в коробке:

Пуск насосов звезда треугольник

Подключение в “Звезду” двигателя на 220 – 380 В

Внизу “тройная” клемма – та самая точка “0”, которая никуда не подключается.

380/660 В

Вариант двигателя с высокими напряжениями 380/660 идеально подходит для работы в схеме “Звезда/Треугольник”. Для работы напрямую (через контактор или ПЧ) обмотки нужно собрать в “Треугольник”.

Пуск насосов звезда треугольник

Двигатель на 380/660 В. Напряжения питания при включении по схемам “Звезда” и “Треугольник”

Напряжение питания 660 В в реальной жизни не используется, а схема, показанная справа, используется для “раскрутки” ротора.

Пуск насосов звезда треугольник

Шильдик двигателя 380 – 660 В, который может работать в схеме “Звезда – Треугольник”

Вот этот же двигатель, его коробка борно, подключен в треугольник:

Пуск насосов звезда треугольник

Обмотки двигателя подключены в треугольник на 380 В

Как же так? – скажете вы. 22 кВт на 380? Напрямую, что ли? Нет конечно, иначе при его включении “тухла” бы сеть всего цеха, а здоровье энергосетей ждало бы серьезное испытание. Тем более, что он раскручивает тяжелый маховик вырубного пресса (справа видна полумуфта). Двигатель подключен через частотник, в этом весь секрет.

Видео:#001."Звезда" или "Треугольник"?Скачать

#001."Звезда" или "Треугольник"?

Звезда / Треугольник: работа схемы

Хорош теорию, даёшь практику! Как же реализован алгоритм работы схемы подключения? Если очень коротко, схема “Звезда-Треугольник” работает так.

1. Подается питание (а напряжение питания у нас во всех режимах 380 В) на выводы U1, V1, W1, а выводы U2, V2, W2 соединяются в одной точке. Реализуется схема “Звезда”, в которой вместо номинала 660 В подается 380 В:

Пуск насосов звезда треугольник

Первый момент запуска. Обмотки в “Звезде”. Около обмоток указано “380” – это номинал. Реально в данном случае на катушках будет действовать напряжение 220 В!

2. Так двигатель работает несколько секунд (от 5 с до нескольких минут, зависит от тяжести пуска). Это время задается таймером (реле времени), который входит в состав схемы.

3. Далее питание полностью снимается на время второго таймера, двигатель по инерции вращается несколько периодов напряжения (время от 50 до 500 мс). Этот защитный интервал необходим для гарантированной безаварийной работы схемы. Контактор “звездного” режима должен успеть выключиться, прежде чем включится “треугольный” контактор. Ведь время выключения у контакторов всегда в несколько раз больше, чем время включения, из-за явлений намагничивания. К сожалению, эта пауза технически реализуется далеко не всегда…

4. После второго таймера включается основной режим, “Треугольник”, в котором двигатель получает нормальное питание и работает, пока его не выключат:

Пуск насосов звезда треугольник

Схема включения треугольник – работа на крейсерской скорости. На катушках – номинальное напряжение.

Всё, если коротко. Дальше будут временные диаграммы, будет всё понятно.

Есть варианты и без второго таймера, но с обязательной блокировкой включения “Треугольника”, пока не выключится “Звезда”.

Вот как я нарисовал для себя схемку много лет назад:

Пуск насосов звезда треугольник

Звезда-Треугольник. Простейшая схема от руки

Но у меня приличный блог, поэтому дальше будет красиво и по порядку.

Теперь о том, как реализуется этот алгоритм. Для удобства разделим схему на две части, которые могут даже иметь разное питание – силовую и управляющую.

Видео:Как работает силовая часть Звезда - ТреугольникСкачать

Как работает силовая часть Звезда - Треугольник

Реализация силовой части схемы

Понятно, что включение двигателя производится контакторами. Их нужно три.

Есть варианты схемы “Звезда-Треугольник” с использованием Преобразователей частоты и Устройств плавного пуска (мягкого пускателя, софтстартера), но не будем раздувать статью.

  1. КМ1 – это общий контактор, он подаёт питание на выводы U1, V1, W1 сразу и навсегда.
  2. КМ2 – контактор “Звезды”, он соединяет выводы U2, V2, W2 в одну точку на время разгона.
  3. КМ3 – контактор “Треугольника”, он подает питание на выводы U2, V2, W2 для дальнейшей работы в номинальном режиме.

Пуск насосов звезда треугольник

Силовая часть схемы “Звезда – Треугольник”

Следите за цветами, буду и дальше их соблюдать для простоты восприятия:

  1. общий контактор КМ1 – синий,
  2. контактор “Звезды” КМ2 – зеленый,
  3. контактор треугольника КМ3 – красный.

Видео:запуск со звезды на треугольникСкачать

запуск со звезды на треугольник

Реализация части управления

Включать и выключать эти три контактора можно разными способами, вот несколько:

  1. Три тумблера. Самый простой и дешевый способ. А что? Главное соблюсти алгоритм!
  2. Специальный переключатель 0 – Y – Δ. Его можно купить или собрать самостоятельно, из любого галетного или кулачкового, типа ПКП.
  3. Релейная схема с таймером. Её рассмотрим ниже.
  4. Управление от специализированного реле. Это отдельная статья, следите за новостями.
  5. Управление от универсального контроллера (PLC). Тут рассматривать нечего – это тот же 1 или 2 вариант, только управляет не человек, а программа.

Слаботочная часть может быть вообще гальванически развязана от силовой, например через трансформатор 380 /110 В или блок питания 220 / 24 VDC. Более того, вообще питаться от аккумулятора 12 В. Главное, чтобы напряжение катушек пускателей соответствовало. Что такое гальваническая развязка и почему она безопасна – читайте про систему заземления IT.

Короче, вот простейшая схема:

Пуск насосов звезда треугольник

Схема управления “Звезда-Треугольник” с реле времени. Простейшая теоретическая

В контактах с временной задержкой все постоянно путаются. У меня – правильно)

Что такое КМ1, КМ2, КМ3, вы уже знаете, а вот КА1 – это реле времени с задержкой при включении. Реле может быть любым, хоть электронным, хоть пневматическим типа ПВЛ. Главное, чтобы контакты переключались из исходного состояния через время задержки после подачи питания на КА1.

Я писал подробно про задержку времени в статье про приставку выдержку времени ПВЛ. Рекомендую, там обширная теоретическая часть.

Подавать питание на схему (запускать двигатель) можно любыми способами – хоть тумблером, хоть через классическую схему с самоподхватом.

Минус такой схемы – есть опасность конфликта между КМ2 и КМ3. Поэтому я не очень люблю такую схему, т.к. она работает “на грани”, и её безаварийность очень зависит от механики и конструкции контакторов. Из-за этого могут подгорать контакты, а может и выбивать вводной автомат. Поэтому обязательно необходима блокировка (электрическая и желательно механическая):

Пуск насосов звезда треугольник

Практическая схема “Звезда-треугольник” с блокировкой

Блокировка реализована на НЗ контактах, подробно об этом и не только в статье про подключение двигателя при помощи магнитного пускателя. Между катушками показана механическая блокировка, не путать со схемой “Треугольник”!

Это реальная схема, можно её применять. Если что не понятно – спрашивайте.

Кстати, вместо КА1.1 можно поставить НО контакт с задержкой Отключения. То есть, включается сразу после подачи питания, выключается – через время. Но для этого нужно два отдельных реле времени с разными принципами работы, которые должны быть синхронизированы для гарантированной паузы. Именно так и реализуется в специализированных реле времени “Звезда-Треугольник”.

Да, ещё замечание. Иногда включение питания общего контактора КМ1 реализуют не напрямую, а через НО контакт “Звезды” КМ2, затем КМ1 становится на самоподхват через свой НО контакт. Это необходимо для дополнительной проверки работоспособности реле времени КА1.

Видео:Этому не учат, а стоило бы. Чем отличается звезда от треугольника? #звезда #треугольник #двигательСкачать

Этому не учат, а стоило бы. Чем отличается звезда от треугольника? #звезда #треугольник #двигатель

Временные диаграммы работы схемы “Звезда-Треугольник”

С привязкой к моей схеме управления, диаграммы включения контакторов:

Пуск насосов звезда треугольник

Временные диаграммы схемы управления звезда-треугольник

Тут вроде всё понятно, но есть одно важное замечание. Ещё раз. Между зеленой и красной областями обязательно нужен небольшой зазор (пауза). Его может не быть (пауза = 0), но эти области могут налазить друг на друга, если используются контакторы с катушкой постоянного тока (=24 VDC). В особенности при использовании обратновключенного диода (а он обязателен!), время выключения может быть больше времени включения в 7-10 раз!

Это я к тому, что однажды мучался с такой схемой, в ней выбивал периодически вводной автомат. Поставили спец.реле с паузой, проблема была решена!

Видео:Описание схемы переключения электродвигателя со звезды на треугольник.Скачать

Описание схемы переключения электродвигателя со звезды на треугольник.

Реальный пример схемы

Вот реальный пример такой схемы на электронном реле времени:

Пуск насосов звезда треугольник

Фото схемы звезда-треугольник с управлением на таймере и гальванической развязкой на трансформаторе.

Слева направо в нижнем ряду: КМ1, КМ2, КМ3, КА1.

А вот пример схемы с управлением от контроллера:

Пуск насосов звезда треугольник

Звезда-треугольник, компрессор, управление от программы контроллера

Видео, как щёлкают контакторы в этой схеме:

Вот как красиво оформили схему немцы в своём компрессоре:

Пуск насосов звезда треугольник

Схема компрессора, подключение электродвигателя Звезда – Треугольник

На входе схемы – три провода, на выходе – шесть. Всё сходится)

Видео:#016. Звезда-треугольник. Полная сборка схемы.Скачать

#016. Звезда-треугольник. Полная сборка схемы.

Как переключить схему двигателя в “Звезду” и в “Треугольник” вручную

Если не нужна никакая автоматика, а двигатель работает постоянно в “Звезде” или в “Треугольнике”, то используя рожковый ключ, можно переключить схему соединения обмоток вручную.

Пуск насосов звезда треугольник

Шильдик двигателя 220 / 380 В 0,37 кВт

На оборотной стороне крышки борно, как обычно, приведена схема:

Пуск насосов звезда треугольник

Схема подключения 220 – 380 на крышке двигателя

Двигатель питался напрямую от трехфазной сети 380 В через контактор и был собран в “Звезду:

Пуск насосов звезда треугольник

Клеммы двигателя в подключены в схеме “Звезда”

Откручиваем гайки М4, снимаем перемычки и провода питания:

Пуск насосов звезда треугольник

Разбираем схему, откидываем провода

Собираем схему в треугольник, на пониженное напряжение 220 В:

Пуск насосов звезда треугольник

Собираем треугольную схему на 220 В

Переделка понадобилась в связи с тем, что нужно изменить скорость вращения двигателя, а для этого применить частотник. А частотники на такую мощность, как правило, однофазные. В результате – поехали!

Кстати, по частотникам планирую цикл статей, подписывайтесь!

Видео:Соединение обмоток треугольникомСкачать

Соединение обмоток треугольником

Особенность работы в “Звезде”

В соответствии с ГОСТ 28173 (МЭК 60034-1) двигатели могут эксплуатироваться при отклонении напряжения ± 5 % или
отклонении частоты ± 2 %. При этом параметры двигателей могут отличаться от номинальных, а превышения температуры обмоток могут быть более предельного по ГОСТ 28173 (МЭК 60034-1) на 10 °С.

К чему это я? Дело в том, что при пуске, когда двигатель работает в “Звезде”, он работает не в режиме (напряжение отличается на 70%!), что может привести к его перегреву, если это будет длиться долго. Будьте внимательны, защищайте двигатель от перегрева и перегрузки! Но это уже совсем другая история)

Видео:Плавный пуск насоса 315 кВтСкачать

Плавный пуск насоса 315 кВт

Видео

Некоторые авторы тоже) доступно и интересно рассказывают о практической стороне вопроса в видео:

Видео:Реверс с переключением со звезды на треугольник. + Принципиальная схемаСкачать

Реверс с переключением со звезды на треугольник. + Принципиальная схема

Скачать

Я постарался максимально раскрыть тему, но если вам нужны академические знания, пожалуйста:

• В.Л.Лихачев. Асинхронные электродвигатели. 2002 г. / Книга представляет собой справочник, в котором подробно описано устройство, принцип работы и характеристики асинхронных электродвигателей. Приводятся справочные данные на двигатели прошлых лет выпуска и современные. Описываются электронные пусковые устройства (инверторы), электроприводы., djvu, 3.73 MB, скачан: 7130 раз./

• Беспалов, Котеленец — Электрические машины / Рассмотрены трансформаторы и электрические машины, используемые в современной технике. Показана их решающая роль в генерации, распределении, преобразовании и утилизации электрической энергии. Даны основы теории, характеристики, режимы работы, примеры конструкций и применения электрических генераторов, трансформаторов и двигателей., pdf, 16.82 MB, скачан: 2316 раз./

• М.М. Кацман — Электрические машины / Некоторые говорят, что это лучший учебник по электротехнике. В книге рассматриваются теория, принцип действия, устройство и анализ режимов работы электрических машин и трансформаторов как общего, так и специального назначения, получивших распространение в различных отраслях техники., pdf, 22.12 MB, скачан: 2057 раз./

• Каталог двигателей Электромаш / Асинхронные электродвигатели с короткозамкнутым ротором — каталог производителя, pdf, 3.13 MB, скачан: 1371 раз./

• Каталог двигателей ВЭМЗ / Параметры и каталог двигателей, pdf, 3.53 MB, скачан: 1177 раз./

• Дьяков В.И. Типовые расчеты по электрооборудованию / Практические расчеты по электрооборудованию, теоретические сведения, методики расчета, примеры и справочные данные., zip, 1.53 MB, скачан: 2509 раз./

• Карпов Ф.Ф. Как проверить возможность подключения нескольких двигателей к электрической сети / В брошюре приведен расчет электрической сети на колебание напряжения при пуске и самозапуске асинхронных двигателей с короткозамкнутым ротором и синхронных двигателей с асинхронным пуском. Рассмотрены условия, при которых допустим пуск и самозапуск двигателей. Изложение методов расчета иллюстрируется числовыми примерами. Брошюра предназначена для квалифицированных электромонтеров в качестве пособия при выборе типа электродвигателей, присоединяемых к коммунальной или промышленной электросети., zip, 1.9 MB, скачан: 1637 раз./

• Руководство по эксплуатации асинхронных двигателей / Настоящее руководство содержит наиболее важные указания по транспортировке, приемке, хранению, монтажу, пусконаладке, эксплуатации, техническому обслуживанию, поиску неисправностей и их устранению для электродвигателей производства «Электромашина». Руководство по эксплуатации предназначено для трехфазных асинхронных электродвигателей низкого и высокого напряжений серий А, АИР, МТН, МТКН, 4МТМ, 4МТКМ, ДА304, А4., pdf, 7.54 MB, скачан: 2535 раз./

• Каталог двигателей АИР / Каталог двигателей АИР — мощность от 0,12 до 315 кВт; частота вращения 3000, 1500, 1000, 750 об/мин; напряжение сети 220/380 В, 380/660 В;, pdf, 1.07 MB, скачан: 1039 раз./

• Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. / Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. Одна из лучших книг, посвящённых основам электротехники. Изложение начинается с самых основ: объясняется, что такое напряжение, сила тока и сопротивление, приводятся указания по расчёту простейших электрических цепей, рассказывается о взаимосвязи и взаимозависимости электрических и магнитных явлений. Объясняется, что такое переменный ток, как устроен генератор переменного тока. Описывается, что такое конденсатор и что собой представляет катушка индуктивности, какова их роль в цепях переменного тока. Объясняется, что такое трёхфазный ток, как устроены генераторы трёхфазного тока и как организуется его передача. Отдельная глава посвящена полупроводниковым приборам: в ней речь идёт о полупроводниковых диодах, о транзисторах и о тиристорах; об использовании полупроводниковых приборов для выпрямления переменного тока и в качестве полупроводниковых ключей. Коротко описываются достижения микроэлектроники. Последняя треть книги целиком посвящена электрическим машинам, агрегатам и оборудованию: в 10 главе речь идёт о машинах постоянного тока (генераторах и двигателях); 11 глава посвящена трансформаторам; о машинах переменного тока (однофазных и трёхфазных, синхронных и асинхронных) подробно рассказывается в 12 главе; выключатели, электромагниты и реле описываются в главе 13; в главе 14 речь идёт о составлении электрических схем. Последняя, 15 глава, посвящена измерениям в электротехнике. Эта книга — отличный способ изучить основы электротехники, понять основополагающие принципы работы электрических машин и агрегатов., zip, 13.87 MB, скачан: 2642 раз./

• Пуск и защита двигателей переменного тока / Пуск и защита двигателей переменного тока. Системы пуска и торможения двигателей переменного тока. Устройства защиты и анализ неисправностей двигателей переменного тока. Руководство по выбору устройств защиты. Руководство от Schneider Electric, pdf, 1.17 MB, скачан: 2029 раз./

P.S. Про использование специализированного реле времени “Звезда-Треугольник” читайте следующую статью.

Как всегда, жду уточнений и вопросов в комментариях!

Видео:#012. Режим переключения "Звезда"-"Треугольник". Часть 1.Скачать

#012. Режим переключения  "Звезда"-"Треугольник". Часть 1.

В чём отличия схем подключения обмоток электродвигателя звездой и треугольником

Система трехфазного электрического тока разработана в конце XIX века русским ученым М.О.Доливо-Добровольским. Три фазы, напряжение в которых сдвинуто друг относительно друга на 120 градусов, кроме прочих достоинств позволяют легко создавать вращающееся магнитное поле. Это поле увлекает за собой роторы самых распространенных и самых простых по конструкции трехфазных асинхронных электродвигателей.

Три обмотки статоров таких электромоторов в большинстве случаев соединяются между собой по схеме «звезда» или «треугольник». В зарубежной литературе применяются термины «star» и «delta», сокращенно S и D. Более распространено мнемоническое обозначение D и Y, что может иногда приводить к путанице – буквой D может маркироваться как «звезда», так и «треугольник».

Видео:Пуск насосаСкачать

Пуск насоса

Фазные и линейные напряжения

Для понимания различий между способами соединения обмоток, сначала надо разобраться с понятиями фазных и линейных напряжений. Фазным напряжением называется напряжение между началом и концом одной фазы. Линейным – между одинаковыми выводами разных фаз.

Для трехфазной сети линейные напряжения – это напряжения между фазами, например, А и В, а фазные – между каждой фазой и нулевым проводником.

Пуск насосов звезда треугольник

Так напряжения Ua, Ub, Uc будут фазными, а Uab, Ubc, Uca – линейными. Различаются эти напряжения в раз. Так, для бытовой и промышленной сети 0,4 кВ линейные напряжения равны 380 вольт, а фазные – 220 вольт.

Видео:#013. Режим "Звезда"-"Треугольник . Часть 2Скачать

#013. Режим "Звезда"-"Треугольник . Часть 2

Подключение обмоток электродвигателя по схеме «звезда»

Пуск насосов звезда треугольник

При соединении фаз электродвигателя звездой, три обмотки своими началами соединяются между собой в общей точке. Свободные концы подключаются каждый к своей фазе сети. В некоторых случаях общая точка соединяется с нулевой шиной системы электроснабжения.

Из рисунка видно, что для данного включения к каждой обмотке прикладывается фазное напряжение сети (для сетей 0,4 кВ – 220 вольт).

Видео:Пуск электродвигателя, схемы подключения, треугольник, звезда, пускатель, трехфазный на 220ВСкачать

Пуск электродвигателя, схемы подключения, треугольник, звезда, пускатель, трехфазный на 220В

Подключение обмоток электродвигателя по схеме «треугольник»

Пуск насосов звезда треугольник

При схеме «треугольник» концы обмоток соединяются между собой последовательно. Получается своеобразный круг, но в литературе принято название «треугольник» из-за часто применяемого начертания. Нулевой провод в этом варианте подключать некуда.

Очевидно, что напряжения, приложенные к каждой обмотке, будут линейными (380 вольт на каждую обмотку).

Видео:#015. Режим "Звезда"-"Треугольник". Часть 3.Скачать

#015. Режим "Звезда"-"Треугольник". Часть 3.

Сравнения схем подключения между собой

Чтобы сравнить обе схемы между собой, надо посчитать электрическую мощность, развиваемую электродвигателем при том или ином включении. Для этого надо рассмотреть понятия линейного (Iлин) и фазного (Iфаз) токов. Фазным током называется ток, протекающий по обмотке фазы. Линейный ток протекает по проводнику, подключенному к выводу обмотки.

В сетях до 1000 вольт источником электричества является трансформатор , вторичная обмотка которого включена «звездой» (в противном случае невозможно организовать нулевой провод) или генератор, обмотки которого соединены по той же схеме.

Пуск насосов звезда треугольник

Из рисунка видно, что при соединении «звездой» токи в проводниках и токи в обмотках электродвигателя равны. Ток в фазе определяется фазным напряжением:

Пуск насосов звезда треугольник

где Z – сопротивление обмотки одной фазы, их можно принять равными. Можно записать, что

Пуск насосов звезда треугольник

Пуск насосов звезда треугольник

Для соединения «треугольником» токи другие – они определяются линейными напряжениями, приложенными к сопротивлению Z:

Пуск насосов звезда треугольник

Следовательно, для данного случая Пуск насосов звезда треугольник.

Теперь можно сравнить полную мощность (Пуск насосов звезда треугольник), потребляемую электродвигателями с разной схемой.

  • для соединения «звездой» полная мощность равна Пуск насосов звезда треугольник;
  • для соединения «треугольником» полная мощность равна Пуск насосов звезда треугольник.

Таким образом, при включении «звездой» электродвигатель развивает мощность в три раза ниже, чем при соединении в треугольник. Это также ведет к другим положительным последствиям:

  • уменьшаются пусковые токи;
  • работа двигателя и его пуск становятся более плавными;
  • электромотор хорошо справляется с кратковременными перегрузками;
  • тепловой режим асинхронного двигателя становится более щадящим.

Обратная сторона медали – двигатель с обмотками «звездой» не может развивать максимальную мощность. В некоторых случаях вращающего момента может не хватить даже для раскрутки ротора.

Видео:Пуск электродвигателя звезда треугольникСкачать

Пуск электродвигателя звезда треугольник

Способы переключения схем «звезда»-«треугольник»

Конструкция большинства электродвигателей позволяет выполнять переключение из одной схемы соединения в другую. Для этого начала и концы обмоток выведены на терминал так, чтобы простым изменением положения накладок можно было из «звезды» сделать «треугольник» и наоборот.

Пуск насосов звезда треугольник

Владелец электродвигателя сам может выбрать, что ему необходимо – мягкий старт с небольшими пусковыми токами и плавная работа или наибольшая мощность, развиваемая двигателем. Если нужно и то, и другое, можно производить переключение автоматически с помощью мощных контакторов.

Пуск насосов звезда треугольник

При нажатии пусковой кнопки SB2, электродвигатель включается по схеме «звезда». Контактор KM3 подтянут, его контакты замыкают между собой выводы обмоток электродвигателя с одной стороны. Противоположные выводы подключаются к сети, каждый к своей фазе через контакты КM1. Если этот контактор включен, трехфазное напряжение подается на обмотки и ротор электромотора приводится во вращение. После некоторого времени, установленного на реле KT1, происходит переключение катушки КM3, она обесточивается, включается контактор KM2, переключая обмотки в «треугольник».

Переключение происходит после того, как двигатель набрал обороты. Этот момент можно контролировать по датчику частоты вращения, но на практике все делается проще. Переключением управляет реле времени – через 5-7 секунд считается, что пусковые процессы завершены, и можно включать двигатель в режим максимальной мощности. Затягивать этот момент не стоит, так как длительная работа с превышением допустимой для «звезды» нагрузки может привести к выходу электропривода из строя.

При реализации такого режима надо помнить следующее:

  1. Пусковой момент двигателя с обмотками, подключенными «звездой» значительно ниже значения этой характеристики электромотора с соединением «треугольник», поэтому запуск электродвигателя с тяжелыми пусковыми условиями таким способом не всегда возможен. Он просто не придет во вращение. К таким случаям относятся электроприводные насосы, работающие с противодавлением и т.п. Подобные проблемы решают с помощью двигателей с фазным ротором, плавно увеличивая ток возбуждения при пуске. Успешно пуск «звездой» применяется при работе с центробежными насосами, работающими на закрытую задвижку, в случае вентиляторных нагрузок на валу двигателя и т.п.
  2. Обмотки электромотора должны выдерживать линейное напряжение сети. Важно не путать электродвигатели D/Y 220/380 вольт (обычно, маломощные асинхронники до 4 кВт) и D/Y 380/660 вольт (обычно, 4 кВт и выше). Сеть 660 вольт практически нигде не используется, но для переключения «звезда-треугольник» можно применять только электромоторы с таким номинальным напряжением. Привод на 220/380 в трехфазную сеть включается только «звездой». В схеме переключения их использовать нельзя.
  3. Должна выдерживаться пауза между выключением «звездного» контактора и включением «треугольного», чтобы избежать накладок. Но увеличивать её сверх меры нельзя, чтобы не допустить остановки электродвигателя. При самостоятельном изготовлении схемы её, возможно, потребуется подобрать экспериментально.

Применяется и обратное переключение. Оно имеет смысл, если мощный двигатель временно работает с небольшой нагрузкой. При этом его коэффициент мощности невысок, потому что активная потребляемая мощность определяется уровнем загрузки электродвигателя. Реактивная же, в основном, определяется индуктивностью обмоток, которая не зависит от нагрузки на валу. Для улучшения соотношения потребляемых активной и реактивной мощностей, можно переключить обмотки в схему «звезда». Это также можно делать вручную или автоматически.

Схема переключения может быть собрана на дискретных элементах – реле времени, контакторах (пускателях) и т.п. Выпускаются и готовые технические решения, объединяющие схему автоматического переключения в одном корпусе. Надо лишь подключить к выходным клеммам электродвигатель и питание от трехфазной сети. Такие устройства могут носить разные названия, например «пусковое реле времени» и т.п.

Включение обмоток электродвигателя по разным схемам имеет свои преимущества и недостатки. Основой грамотной эксплуатации является знание всех плюсов и минусов. Тогда двигатель прослужит долго, принося максимальный эффект.

Пуск насосов звезда треугольник

Как перевести амперы в киловаты?

Пуск насосов звезда треугольник

Проверка электродвигателей разного вида с помощью мультиметра

Пуск насосов звезда треугольник

Как подключить 3 фазный электродвигатель к сети 220 вольт через конденсатор

Пуск насосов звезда треугольник

Устройство, виды и принцип действия асинхронных электродвигателей

Пуск насосов звезда треугольник

Особенности и схема подключения частотного преобразователя к разным типам электродвигателей

Пуск насосов звезда треугольник

Схема работы устройства плавного пуска, его назначение и конструкция

🎬 Видео

Реверс с переключением звезда-треугольник!Скачать

Реверс с переключением звезда-треугольник!
Поделиться или сохранить к себе: