Прямоугольный треугольник его размеры

Прямоугольный треугольник

Прямоугольный треугольник – треугольник, в котором один угол прямой (то есть равен 90˚).

Сторона, противоположная прямому углу, называется гипотенузой прямоугольного треугольника.

Стороны, прилежащие к прямому углу, называются катетами .

Прямоугольный треугольник его размеры

Содержание
  1. Как найти стороны прямоугольного треугольника
  2. Онлайн калькулятор
  3. Найти гипотенузу (c)
  4. Найти гипотенузу по двум катетам
  5. Найти гипотенузу по катету и прилежащему к нему острому углу
  6. Найти гипотенузу по катету и противолежащему к нему острому углу
  7. Найти гипотенузу по двум углам
  8. Найти катет
  9. Найти катет по гипотенузе и катету
  10. Найти катет по гипотенузе и прилежащему к нему острому углу
  11. Найти катет по гипотенузе и противолежащему к нему острому углу
  12. Найти катет по второму катету и прилежащему к нему острому углу
  13. Найти катет по второму катету и противолежащему к нему острому углу
  14. Прямоугольный треугольник. Теорема Пифагора.
  15. теория по математике 📈 планиметрия
  16. Свойства прямоугольного треугольника
  17. Признаки равенства прямоугольных треугольников
  18. Теорема Пифагора
  19. Египетский треугольник
  20. Пифагоровы тройки
  21. 🔍 Видео
Признаки равенства прямоугольных треугольников

Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны ( по двум катетам ).

Прямоугольный треугольник его размеры

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны ( по катету и острому углу ).

Прямоугольный треугольник его размерыЕсли гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и острому углу ).

Прямоугольный треугольник его размеры

Если гипотенуза и катет одного прямоугольного треугольника равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и катету ).

Прямоугольный треугольник его размеры

Свойства прямоугольного треугольника

1. Сумма острых углов прямоугольного треугольника равна 90˚.

2. Катет, противолежащий углу в 30˚, равен половине гипотенузы.

И обратно, если в треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚.

Прямоугольный треугольник его размеры

3. Теорема Пифагора:

Прямоугольный треугольник его размеры, где Прямоугольный треугольник его размеры– катеты, Прямоугольный треугольник его размеры– гипотенуза. Видеодоказательство

Прямоугольный треугольник его размеры

4. Площадь Прямоугольный треугольник его размерыпрямоугольного треугольника с катетами Прямоугольный треугольник его размеры:

Прямоугольный треугольник его размеры

5. Высота Прямоугольный треугольник его размерыпрямоугольного треугольника, проведенная к гипотенузе выражается через катеты Прямоугольный треугольник его размерыи гипотенузу Прямоугольный треугольник его размерыследующим образом:

Прямоугольный треугольник его размеры

Прямоугольный треугольник его размеры

6. Центр описанной окружности – есть середина гипотенузы.

Прямоугольный треугольник его размеры

7. Радиус Прямоугольный треугольник его размерыописанной окружности есть половина гипотенузы Прямоугольный треугольник его размеры:

Прямоугольный треугольник его размеры

8. Медиана, проведенная к гипотенузе, равна ее половине

9. Радиус Прямоугольный треугольник его размерывписанной окружности выражается через катеты Прямоугольный треугольник его размерыи гипотенузу Прямоугольный треугольник его размерыследующим образом:

Прямоугольный треугольник его размеры

Прямоугольный треугольник его размеры

Тригонометрические соотношения в прямоугольном треугольнике смотрите здесь.

Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Как найти стороны прямоугольного треугольника

Видео:Свойства прямоугольного треугольника. 7 класс.Скачать

Свойства прямоугольного треугольника. 7 класс.

Онлайн калькулятор

Прямоугольный треугольник его размеры

Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • для гипотенузы (с):
    • длины катетов a и b
    • длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
  • для катета:
    • длину гипотенузы (с) и длину одного из катетов
    • длину гипотенузы (с) и прилежащий к искомому катету (a или b) острый угол (β или α, соответственно)
    • длину гипотенузы (с) и противолежащий к искомому катету (a или b) острый угол (α или β, соответственно)
    • длину одного из катетов (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину одного из катетов (a или b) и противолежащий к нему острый угол (α или β, соответственно)

Введите их в соответствующие поля и получите результат.

Найти гипотенузу (c)

Найти гипотенузу по двум катетам

Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?

Формула

следовательно: c = √ a² + b²

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:

c = √ 3² + 4² = √ 9 + 16 = √ 25 = 5 см

Найти гипотенузу по катету и прилежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?

Формула
Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:

c = 2 / cos(60) = 2 / 0.5 = 4 см

Найти гипотенузу по катету и противолежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?

Формула
Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:

c = 2 / sin(30) = 2 / 0.5 = 4 см

Найти гипотенузу по двум углам

Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.

Найти катет

Найти катет по гипотенузе и катету

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:

a = √ 5² — 4² = √ 25 — 16 = √ 9 = 3 см

Найти катет по гипотенузе и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?

Формула
Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:

b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см

Найти катет по гипотенузе и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:

a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см

Найти катет по второму катету и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?

Формула
Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:

b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см

Найти катет по второму катету и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:

Видео:7 класс, 35 урок, Некоторые свойства прямоугольных треугольниковСкачать

7 класс, 35 урок, Некоторые свойства прямоугольных треугольников

Прямоугольный треугольник. Теорема Пифагора.

теория по математике 📈 планиметрия

Если в треугольнике есть угол, равный 90 градусов, то такой треугольник называется прямоугольным. Стороны прямоугольного треугольника называются – катеты и гипотенуза. Катеты – это стороны, образующие прямой угол. Гипотенуза – сторона, которая располагается напротив прямого угла.

Прямоугольный треугольник его размеры

На рисунке треугольник АВС – прямоугольный, угол С равен 90º, стороны АС и ВС – катеты, а сторона АВ – гипотенуза.

Видео:Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !Скачать

Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !

Свойства прямоугольного треугольника

  • В прямоугольном треугольнике гипотенуза является наибольшей стороной.
  • В прямоугольном треугольнике катет, лежащий напротив угла 30 0 , равен половине гипотенузы. И обратно, если катет равен половине гипотенузы, то угол, лежащий напротив этого катета, равен 30 0 .

Прямоугольный треугольник его размеры

Например, пусть угол А=30 0 , а гипотенуза АВ=28 см, то катет ВС будет равен 14 см, так как лежит напротив угла А=30 0 . Или, например, если катет ВС=6 см, а гипотенуза АВ равна 12 см, то угол А (лежащий напротив катета ВС), равен 30 0 .

  • Сумма острых углов прямоугольного треугольника равна всегда 90 градусов.
  • Медиана, проведенная к гипотенузе, равна её половине.

Прямоугольный треугольник его размеры

На рисунке изображен прямоугольный треугольник АВС, где CD – медиана, проведенная к гипотенузе. По свойству – медиана CD=0,5АВ, то есть AD=DB=CD.

Видео:Высота прямоугольного треугольникаСкачать

Высота прямоугольного треугольника

Признаки равенства прямоугольных треугольников

Существует 4 признака равенства прямоугольных треугольников:

  1. Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны.
  2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.
  3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
  4. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны.

Чтобы быстрее запомнить данные признаки, можно использовать их краткую трактовку:

  1. по катетам;
  2. по катету и прилежащему острому углу;
  3. по гипотенузе и острому углу;
  4. по гипотенузе и катету.

Видео:ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК 😉 #егэ #математика #профильныйегэ #shorts #огэ

Теорема Пифагора

Древнегреческий философ, ученый, математик – Пифагор Самосский вывел теорему, которая до сих применима для решения задач. Теорема названа в честь него – «теорема Пифагора».

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Прямоугольный треугольник его размеры

На рисунке в прямоугольном треугольнике АВ 2 =АС 2 +ВС 2

Например, если в данном треугольнике катеты равны 9 и 12 см, то можно найти длину гипотенузы, используя теорему: АВ 2 =9 2 +12 2 =81+144=225=15 2 , значит АВ=15 см.

Египетский треугольник

Треугольник со сторонами 3, 4 и 5 см называют Египетским треугольником.

Пифагоровы тройки

Тройки чисел, которые удовлетворяют теореме Пифагора, называют Пифагоровы тройки, а сами числа – Пифагоровы числа. Например, такими являются числа 16, 12 и 20 – это числа, которые при подстановке в формулу теоремы, дают нам верное равенство: 16 2 +12 2 =20 2 , 256+144=400, 400=400.

🔍 Видео

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК §17 геометрия 7 классСкачать

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК §17 геометрия 7 класс

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)

Высота прямоугольного треугольника #огэ #математика #огэматематика #данирСкачать

Высота прямоугольного треугольника #огэ #математика #огэматематика #данир

Свойства прямоугольного треугольника. Практическая часть. 7 класс.Скачать

Свойства прямоугольного треугольника. Практическая часть.  7 класс.

Геометрия 7 класс : Свойства прямоугольного треугольникаСкачать

Геометрия 7 класс : Свойства прямоугольного треугольника

Свойства прямоугольного треугольника - 7 класс геометрияСкачать

Свойства прямоугольного треугольника - 7 класс геометрия

Теорема Пифагора для чайников)))Скачать

Теорема Пифагора для чайников)))

№256. Один из углов прямоугольного треугольника равен 60°, а сумма гипотенузы и меньшего из катетовСкачать

№256. Один из углов прямоугольного треугольника равен 60°, а сумма гипотенузы и меньшего из катетов

Секретное свойство прямоугольного треугольника! Только тссс🤫 #егэ2022 #треугольник #егэпоматематикеСкачать

Секретное свойство прямоугольного треугольника! Только тссс🤫 #егэ2022 #треугольник #егэпоматематике

Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Прямоугольный треугольникСкачать

Прямоугольный треугольник

Важное свойство прямоугольного треугольника #огэ #математика #огэматематика #данирСкачать

Важное свойство прямоугольного треугольника #огэ #математика #огэматематика #данир

Что с углами. Прямоугольный треугольник #shortsСкачать

Что с углами. Прямоугольный треугольник #shorts

35. Некоторые свойства прямоугольных треугольниковСкачать

35. Некоторые свойства прямоугольных треугольников
Поделиться или сохранить к себе: