Основание тетраэдра это равносторонний треугольник

Тетраэдр.

Тетраэдр — это частный случай правильной треугольной пирамиды.

Тетраэдр — правильный многогранник (четырёхгранный), имеющий 4 грани, они, в свою очередь, оказываются правильными треугольниками. У тетраэдра 4 вершины, к каждой из них сходится 3 ребра. Общее количество ребер у тетраэдра 6.

Основание тетраэдра это равносторонний треугольникОснование тетраэдра это равносторонний треугольник

Медиана тетраэдра — это отрезок, который соединяет вершину тетраэдра и точку пересечения медиан противоположной грани (медиан равностороннего треугольника, который противолежит вершине).

Бимедиана тетраэдра — это отрезок, который соединяет середины рёбер, что скрещиваются (соединяет середины сторон треугольника, который есть одной из граней тетраэдра).

Высота тетраэдра — это отрезок, который соединяет вершину и точку противоположной грани и перпендикулярен этой грани (т.е. это высота, проведенная от всякой грани, кроме того, совпадает с центром описанной окружности).

Видео:Тетраэдр. 10 класс.Скачать

Тетраэдр. 10 класс.

Свойства тетраэдра.

Параллельные плоскости, которые проходят через пары рёбер тетраэдра, что скрещиваются, и определяют описанный параллелепипед около тетраэдра.

Плоскость, которая проходит сквозь середины 2-х рёбер тетраэдра, что скрещиваются, и делит его на 2 части, одинаковые по объему.

Все медианы и бимедианы тетраэдра пересекаются в одной точке. Эта точка делит медианы в отношении 3:1, если считать от вершины. Она же делит бимедианы на две равные части.

Видео:10 класс, 12 урок, ТетраэдрСкачать

10 класс, 12 урок, Тетраэдр

Типы тетраэдров.

Правильный тетраэдр — это такая правильная треугольная пирамида, каждая из граней которой оказывается равносторонним треугольником.

У правильного тетраэдра каждый двугранный угол при рёбрах и каждый трёхгранный угол при вершинах имеют одинаковую величину.

Тетраэдр состоит из 4 граней, 4 вершин и 6 ребер.

Правильный тетраэдр — это один из 5-ти правильных многогранников.

Кроме правильного тетраэдра, заслуживают внимания такие типы тетраэдров:

Равногранный тетраэдр, у него каждая грань представляет собой треугольник. Все грани-треугольники такого тетраэдра равны.

Ортоцентрический тетраэдр, у него каждая высота, опущенная из вершин на противоположную грань, пересекается с остальными в одной точке.

Прямоугольный тетраэдр, у него каждое ребро, прилежащее к одной из вершин, перпендикулярно другим ребрам, прилежащим к этой же вершине.

Каркасный тетраэдр — тетраэдр, который таким условиям:

  • есть сфера, которая касается каждого ребра,
  • суммы длин ребер, что скрещиваются равны,
  • суммы двугранных углов при противоположных ребрах равны,
  • окружности, которые вписаны в грани, попарно касаются,
  • каждый четырехугольник, образующийся на развертке тетраэдра, — описанный,
  • перпендикуляры, поставленные к граням из центров окружностей, в них вписанных, пересекаются в одной точке.

Соразмерный тетраэдр, бивысоты у него одинаковы.

Инцентрический тетраэдр, у него отрезки, которые соединяют вершины тетраэдра с центрами окружностей, которые вписаны в противоположные грани, пересекаются в одной точке.

Видео:Развертка тетраэдра - это легко! Как сделать объёмную правильную треугольную пирамиду из бумаги?Скачать

Развертка тетраэдра - это легко! Как сделать объёмную правильную треугольную пирамиду из бумаги?

Формулы для определения элементов тетраэдра.

Высота тетраэдра:

Основание тетраэдра это равносторонний треугольник

где h — высота тетраэдра, a — ребро тетраэдра.

Объем тетраэдра рассчитывается по классической формуле объема пирамиды. В нее нужно подставить высоту тетраэдра и площадь правильного (равностороннего) треугольника.

Основание тетраэдра это равносторонний треугольник

где V — объем тетраэдра, a — ребро тетраэдра.

Основные формулы для правильного тетраэдра:

Основание тетраэдра это равносторонний треугольник

Где S — Площадь поверхности правильного тетраэдра;

h — высота, опущенная на основание;

r — радиус вписанной в тетраэдр окружности;

Видео:№252. Основанием пирамиды DABC является равнобедренный треугольник ABC, в котором АВ = АС, ВС=6 смСкачать

№252. Основанием пирамиды DABC является равнобедренный треугольник ABC, в котором АВ = АС, ВС=6 см

Основание тетраэдра это равносторонний треугольник

Основание тетраэдра это равносторонний треугольник

Учебный курсРешаем задачи по геометрии

В этом уроке приведены определение и свойства правильной треугольной пирамиды и ее частного случая — тетраэдра (см. ниже). Ссылки на примеры решения задач приведены в конце урока.

Видео:Формулы равностороннего треугольника #shortsСкачать

Формулы равностороннего треугольника #shorts

Определение

Правильная треугольная пирамида — это пирамида, основанием которой является правильный треугольник, а вершина проецируется в центр основания.

Основание тетраэдра это равносторонний треугольник

На рисунке обозначены:
ABC — Основание пирамиды
OS — Высота
KS — Апофема
OK — радиус окружности, вписанной в основание
AO — радиус окружности, описанной вокруг основания правильной треугольной пирамиды
SKO — двугранный угол между основанием и гранью пирамиды (в правильной пирамиде они равны)

Важно. В правильной треугольной пирамиде длина ребра (на рисунке AS, BS, CS ) может быть не равна длине стороны основания (на рисунке AB, AC, BC). Если длина ребра правильной треугольной пирамиды равна длине стороны основания, то такая пирамида называется тетраэдром (см. ниже).

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Свойства правильной треугольной пирамиды:

  • боковые ребра правильной пирамиды равны
  • все боковые грани правильной пирамиды являются равнобедренными треугольниками
  • в правильную треугольную пирамиду можно как вписать, так и описать вокруг неё сферу
  • если центры вписанной и описанной вокруг правильной треугольной пирамиды, сферы совпадают, то сумма плоских углов при вершине пирамиды равна π (180 градусов) , а каждый из них соответственно равен π / 3 (пи делить на 3 или 60 градусов ).
  • площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
  • вершина пирамиды проецируется на основание в центр правильного равностороннего треугольника,, который является центром вписанной окружности и точкой пересечения медиан

Формулы для правильной треугольной пирамиды

Формула объема правильной треугольной пирамиды:

Основание тетраэдра это равносторонний треугольник

V — объем правильной пирамиды, имеющей в основании правильный (равносторонний) треугольник
h — высота пирамиды
a — длина стороны основания пирамиды
R — радиус описанной окружности
r — радиус вписанной окружности

Поскольку правильная треугольная пирамида является частным случаем правильной пирамиды, то формулы, которые верны для правильной пирамиды, верны и для правильной треугольной — см. формулы для правильной пирамиды.

Примеры решения задач:

Видео:Как строить сечения тетраэдра и пирамидыСкачать

Как строить сечения тетраэдра и пирамиды

Тетраэдр

Частным случаем правильной треугольной пирамиды является тетраэдр.

Тетраэдр — это правильный многогранник (правильная треугольная пирамида) у которой все грани являются правильными треугольниками.

  • Все грани равны
  • 4 грани, 4 вершины и 6 ребер
  • Все двугранные углы при рёбрах и все трёхгранные углы при вершинах равны

Медиана тетраэдра — это отрезок, соединяющий вершину с точкой пересечения медиан противоположной грани (медиан равностороннего треугольника, противолежащего вершине)

Бимедиана тетраэдра — это отрезок, соединяющий середины скрещивающихся рёбер (соединяющий середины сторон треугольника, являющегося одной из граней тетраэдра)

Высота тетраэдра — это отрезок, соединяющий вершину с точкой противоположной грани и перпендикулярный этой грани (то есть является высотой, проведенной от любой грани, также совпадает с центром описанной окружности).

Тетраэдр обладает следующими свойствами:

  • Все медианы и бимедианы тетраэдра пересекаются в одной точке
  • Эта точка делит медианы в отношении 3:1, считая от вершины
  • Эта точка делит бимедианы пополам

Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Тетраэдр

Основание тетраэдра это равносторонний треугольник

Древние греки дали многограннику имя по числу граней. «Тетра» означает четыре, «хедра» — означает грань (тетраэдр – четырехгранник).

Видео:Два тетраэдраСкачать

Два тетраэдра

Поэтому на вопрос — «что такое тетраэдр?», можно дать следующее определение: » Тетраэдр это геометрическое тело из четырех граней, каждая их которых — правильный треугольник «.

Многогранник относится к правильным многогранникам и является одним из пяти Платоновых тел .

Тетраэдр имеет следующие характеристики:

  • Тип грани – правильный треугольник;
  • Число сторон у грани – 3;
  • Общее число граней – 4;
  • Число рёбер, примыкающих к вершине – 3;
  • Общее число вершин – 4;
  • Общее число рёбер – 6;

Правильный тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180°.
Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.

Является ли тетраэдр пирамидой? Да, тетраэдр это треугольная пирамида у которой все стороны равны.

Может ли пирамида быть тетраэдром? Только если это пирамида с треугольным основанием и каждая из её сторон равносторонний треугольник.

Отметим, что очень редко, но встречаются геометрические тела, составленные не из правильных треугольников, и их тоже называют тетраэдры, так как они имеют четыре грани.

Видео:Самый короткий тест на интеллект Задача Массачусетского профессораСкачать

Самый короткий тест на интеллект Задача Массачусетского профессора

Математические характеристики тетраэдра

Основание тетраэдра это равносторонний треугольник

Тетраэдр может быть помещен в сферу (вписан), так, что каждая из его вершин будет касаться внутренней стенки сферы.

Радиус описанной сферы тетраэдра определяется по формуле:

Основание тетраэдра это равносторонний треугольник

, где a — длина стороны.

Основание тетраэдра это равносторонний треугольник

Сфера может быть вписана внутрь тетраэдра.

Радиус вписанной сферы тетраэдра определяется по формуле:

Основание тетраэдра это равносторонний треугольник

Основание тетраэдра это равносторонний треугольник

Основание тетраэдра это равносторонний треугольник

Площадь поверхности тетраэдра

Для наглядности, площадь поверхности тетраэдра можно представить в виде площади развёртки. Площадь поверхности можно определить как площадь одной из сторон тетраэдра (это площадь правильного треугольника) умноженной на 4. Либо воспользоваться формулой: Основание тетраэдра это равносторонний треугольник

Основание тетраэдра это равносторонний треугольник

Объем тетраэдра определяется по следующей формуле:

Основание тетраэдра это равносторонний треугольник

Основание тетраэдра это равносторонний треугольник

Высота тетраэдра определяется по следующей формуле:

Основание тетраэдра это равносторонний треугольник

Расстояние до центра основания тетраэдра определяется по формуле:

Основание тетраэдра это равносторонний треугольник

Видео:Нахождение высоты тетраэдра.Скачать

Нахождение высоты тетраэдра.

Вариант развертки

Тетраэдр можно изготовить самостоятельно. Бумага или картон самый подходящий вариант. Для сборки потребуется бумажная развёртка — единая деталь с линиями сгибов.

Основание тетраэдра это равносторонний треугольник

Древнегреческий философ Платон ассоциировал тетраэдр с «земным» элементом огонь, поэтому для построения модели этого правильного многогранника мы выбрали красный цвет.

Основание тетраэдра это равносторонний треугольник

Заметим, что это не единственный вариант развертки.

Для построения модели Вы можете скачать развертку в формате pdf и распечатать на листе формата А4:
— если Вы предполагаете распечатать на цветном принтере — цветная развертка
— если Вы предполагаете использовать для сборки цветной картон — развертка

Видео:ПОСТРОЕНИЕ СЕЧЕНИЙ ТЕТРАЭДРА ПЛОСКОСТЬЮСкачать

ПОСТРОЕНИЕ СЕЧЕНИЙ ТЕТРАЭДРА ПЛОСКОСТЬЮ

Видео. Тетраэдр из набора «Волшебные грани»

Основание тетраэдра это равносторонний треугольник

Основание тетраэдра это равносторонний треугольник

Вы можете изготовить модель тетраэдра воспользовавшись деталями для сборки из набора «Волшебные грани».

Сборка многогранника из набора:

Подробная сборка от Алексея Жигулева (youtube-канал PRO)

Подробная сборка от Алексея Жигулева (youtube-канал PRO)

вращение готового многогранника:

Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Видео. Вращение всех правильных многогранников

Популярное

Совершенство сферической формы издавна привлекало внимание мыслителей и учёных, которые с помощью сфер пытались объяснить гармонию окружающего мира.

Для Вашего удобства мы снизили стоимость доставки наборов «Волшебные грани» в разы!

Основатели города Мирный, находящегося в Архангельской области разместили на флаге и гербе своего города многогранник – «Большой додекаэдр».

Нечасто удается встретить многогранники за пределами учебников математики. И если такие геометрические формы как куб, призма и цилиндр встречаются повседневно, то.

Если ты не любишь математику, опасайся хэллоуина! Злые силы придут за тобой в хэллоуин! Создай двух стражей, которые будут оберегать тебя от злых сил! Ну, или.

Многогранник — (определение) геометрическое тело, ограниченное со всех сторон плоскими многоугольниками — гранями.

1. Вы хотели бы увидеть, как можно преобразовать развертку обычного куба? Если да, то следующий.

💡 Видео

Тетраэдр. Видеоурок 5. Геометрия 10 классСкачать

Тетраэдр. Видеоурок 5. Геометрия 10 класс

Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.Скачать

Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.

№250. Основанием пирамиды является равнобедренный треугольник с углом 120°. Боковые ребраСкачать

№250. Основанием пирамиды является равнобедренный треугольник с углом 120°. Боковые ребра

Геометрия 10 класс (Урок№7 - Тетраэдр и параллелепипед.)Скачать

Геометрия 10 класс (Урок№7 - Тетраэдр и параллелепипед.)

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

№251. Основанием пирамиды DABC является прямоугольный треугольник с гипотенузой ВС. БоковыеСкачать

№251. Основанием пирамиды DABC является прямоугольный треугольник с гипотенузой ВС. Боковые

Объем пирамиды. Практическая часть. 11 класс.Скачать

Объем пирамиды. Практическая часть. 11 класс.
Поделиться или сохранить к себе: