Найти треугольник с максимальной площадью

Найти треугольник с максимальной площадью

На плоскости дан набор точек с целочисленными координатами. Необходимо найти такой треугольник наибольшей площади с вершинами в этих точках, у которого нет общих точек с осью Ох, а одна из сторон лежит на оси Оу.

Напишите эффективную, в том числе по памяти, программу, которая будет решать эту задачу. Размер памяти, которую использует Ваша программа, не должен зависеть от количества точек.

Перед текстом программы кратко опишите используемый алгоритм решения задачи и укажите используемый язык программирования и его версию.

Видео:Площадь равнобедренного треугольника для фанатов Dark Souls и для всех остальных #огэ2023 #егэ2023Скачать

Площадь равнобедренного треугольника для фанатов Dark Souls и для всех остальных #огэ2023 #егэ2023

Описание входных данных

В первой строке вводится одно целое положительное число — количество точек N.

Каждая из следующих N строк содержит два целых числа — сначала координата х, затем координата у очередной точки. Числа разделены пробелом.

Описание выходных данных

Программа должна вывести одно число — максимальную площадь треугольника, удовлетворяющего условиям задачи. Если такого треугольника не существует, программа должна вывести ноль.

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Пример входных данных

Пример выходных данных для приведённого выше примера входных данных: 22.5

Заметим, что раз искомый треугольник не должен иметь общих точек с осью ОХ, то все его вершины будут одновременно или ниже оси, или выше. Тогда найдём треугольник с максимальной площадью для верхней полуплоскости, для нижней, а потом выберем лучший из них.

Задачи для обеих полуплоскостей решаются аналогично, рассмотрим решение для положительной полуплоскости. Так как две точки будут лежать на оси ОУ, удобнее всего будет считать площадь треугольника по формуле S = a · h / 2, где a — длина основания треугольника, лежащего на оси ОУ, а h — длина перпендикуляра из третьей точки на ось ОУ.

Заметим, что если первые две точки лежат на оси ОУ, то третья точка на ней не лежит, иначе бы треугольник получился вырожденный. Значит, множество точек, подходящих на роль первых двух в этом треугольнике, и множество точек, подходящих на роль третьей точки, не имеют общих точек. Из этого следует, что можно независимо найти для треугольника максимальное основание и максимальную высоту и площадь получившегося треугольника будет максимальна.

Видео:Как найти площадь треугольника? #треугольник #математика #егэ #shorts #подготовкакегэ #огэ #площадьСкачать

Как найти площадь треугольника? #треугольник #математика #егэ #shorts #подготовкакегэ #огэ #площадь

Утверждается, что в таком случае в качестве трёх вершин нужно брать точку с нулевой абсциссой и максимальной ординатой, точку с нулевой абсциссой и минимальной ординатой и точку, максимально удалённую от оси ОУ. Не стоит забывать, что рассматривать необходимо только точки с положительной ординатой. Удобно было бы завести массив и три раза по нему пробежаться, но оптимальнее будет искать точки сразу при считывании.

Ниже приведён код решения на языке Pascal версии 2.6.2.

var n, i, x, y, maxPosY, minPosY, maxNegY, minNegY, maxNegAbsX, maxPosAbsX, s : longint;

Задача 2 «Определение максимальной площади треугольника»

Найти треугольник с максимальной площадьюНайти треугольник с максимальной площадьюНайти треугольник с максимальной площадьюНайти треугольник с максимальной площадьюНайти треугольник с максимальной площадьюНайти треугольник с максимальной площадьюНайти треугольник с максимальной площадьюНайти треугольник с максимальной площадью

Дата13.04.2019
өлшемі109 Kb.
#96226
түріЗадача
    Бұл бет үшін навигация:
  • Исходные данные: Гипотенуза c Катет а Расчетные данные
  • Составим геометрическую модель: с Этап 2. Разработка компьютерной модели.
  • Вывод
  • Этап 3. Анализ результатов моделирования. Вывод.
Задача 3.2 «Определение максимальной площади треугольника».

В прямоугольном треугольнике задана длина гипотенузы с. Найти размеры катетов, при которых треугольник имеет наибольшую площадь. Составить геометрическую и математическую модель. Провести расчеты.

Основные расчетные формулы:
Длина противолежащего катета
Найти треугольник с максимальной площадью
Площадь прямоугольного треугольника
Найти треугольник с максимальной площадью
Составим геометрическую модель:

Найти треугольник с максимальной площадью

Видео:Найти площадь большого треугольникаСкачать

Найти площадь большого треугольника

Этап 2. Разработка компьютерной модели.
Эксперимент 1.

Внесем данные в таблицу.

Зададим размер катета формулой
=A9+$B$5
в ячейках А10-А29, а в A9 внесем значение 0.

Длина стороны дна рассчитывается по формуле «с=a-2b» в табличном редакторе она будет выглядеть

=Если(($B$4^2-A10^2)

Эксперимент 3:Шаг изменения первого катета 1см
Длина гипотенузыодин из катетовплощадь
536
10724,9
12835,7

Вывод: При увеличении длины гипотенузы, мы наблюдаем увеличении катета, и максимальной площади.
Эксперимент 4.

Видео:Задача найти площади треугольников при пересечении медианСкачать

Задача найти площади треугольников при пересечении медиан

Определим максимальное значение при длине шага Δb=0,3.

Изменим значение в ячейке «B5» с 1 на 0,3 и проверим результаты для 5, 10 и 12 см.

Сравним полученные результаты

Эксперимент 3:Шаг изменения первого катета 1см
Длина гипотенузыодин из катетовплощадь
536
10724,9
12835,7
Эксперимент 4:Шаг изменения первого катета 0,3см
Длина гипотенузыодин из катетовплощадь
53,66,25
107,224,98
128,435,99

Вывод: При уменьшении длины шага, мы получаем более точные значения максимальной площади.
Эксперимент 5.

Теперь нам нужно подобрать длину гипотенузы для заданных площадей: 54 см 2 , 96 см 2 и

150 см 2 . После проведения подбора мы получим следующие значения:

Эксперимент 5:Подбор длины гипотенузы

Видео:В ТРЕУГОЛЬНИК ВПИСАН ПРЯМОУГОЛЬНИК, НАЙТИ МАКСИМУМ ПЛОЩАДИ!Скачать

В ТРЕУГОЛЬНИК ВПИСАН ПРЯМОУГОЛЬНИК, НАЙТИ МАКСИМУМ ПЛОЩАДИ!

Длина гипотенузы

один из катетовплощадь
15954
201296
2515150

Вывод: С помощью данной модели, можно не только определить максимальную площадь, если мы знаем длину катета и гипотенузы, но и вычислить длину катета по заданному значению площади.

Этап 3. Анализ результатов моделирования.
Вывод. В результате проведения эксперимента, мы научились составлять математическую и геометрическую модель, для расчета площади прямоугольного треугольника с помощью табличного процессора. Также мы научились анализировать результаты и проводить расчеты с большей точностью.

🔍 Видео

Площади фигур - треугольника, параллелограмма, трапеции, ромба. Формула Пика и ЕГЭСкачать

Площади фигур - треугольника, параллелограмма, трапеции, ромба. Формула Пика и ЕГЭ

Как найти площадь треугольника без формулы?Скачать

Как найти площадь треугольника без формулы?

Найдите площадь треугольника на рисунке ★ Два способа решенияСкачать

Найдите площадь треугольника на рисунке ★ Два способа решения

Максимальная площадь треугольника.Скачать

Максимальная площадь треугольника.

Площадь по теореме Герона #математика #площадь #треугольник #герона #егэ #огэ #найтиплощадь #теоремаСкачать

Площадь по теореме Герона #математика #площадь #треугольник #герона #егэ #огэ #найтиплощадь #теорема

Найти площадь красного треугольникаСкачать

Найти площадь красного треугольника

✓ Новая формула площади треугольника | Ботай со мной #108 | Борис ТрушинСкачать

✓ Новая формула площади треугольника | Ботай со мной #108 | Борис Трушин

Площадь ромба. Легче понять...Скачать

Площадь ромба. Легче понять...

9 класс, 12 урок, Теорема о площади треугольникаСкачать

9 класс, 12 урок, Теорема о площади треугольника

Площадь равностороннего треугольника #егэ #математика #геометрия #треугольникСкачать

Площадь равностороннего треугольника #егэ #математика #геометрия #треугольник

КАК найти площадь трапеции? Геометрия 8 класс | МатематикаСкачать

КАК найти площадь трапеции? Геометрия 8 класс | Математика

100. Теорема о площади треугольникаСкачать

100. Теорема о площади треугольника

Почти никто... ➜ Найдите площади треугольников на рисункеСкачать

Почти никто... ➜ Найдите площади треугольников на рисунке

Максимальная площадь прямоугольника (гениальный подход) #математика #геометрия #площадь #периметрСкачать

Максимальная площадь прямоугольника (гениальный подход) #математика #геометрия #площадь #периметр
Поделиться или сохранить к себе: