Найти медиану треугольника огэ

Определение и свойства медианы треугольника

В данной статье мы рассмотрим определение медианы треугольника, перечислим ее свойства, а также разберем примеры решения задач для закрепления теоретического материала.

Содержание
  1. Определение медианы треугольника
  2. Свойства медианы
  3. Свойство 1 (основное)
  4. Свойство 2
  5. Свойство 3
  6. Свойство 4
  7. Свойство 5
  8. Примеры задач
  9. Задание №16 ОГЭ по математике
  10. Треугольники, четырёхугольники, многоугольники и их элементы
  11. Теория к заданию №16
  12. Разбор типовых вариантов заданий №16 ОГЭ по математике
  13. Первый вариант задания
  14. Второй вариант задания
  15. Третий вариант задания
  16. Четвертый вариант задания
  17. Пятый вариант задания
  18. Шестой вариант задания
  19. Седьмой вариант задания
  20. Восьмой вариант задания
  21. Девятый вариант задания
  22. Десятый вариант задания
  23. Демонстрационный вариант ОГЭ 2019
  24. Геометрия. Урок 3. Треугольники
  25. Определение треугольника
  26. Виды треугольников
  27. Отрезки в треугольнике
  28. Площадь треугольника
  29. Равнобедренный треугольник
  30. Равносторонний треугольник
  31. Прямоугольный треугольник
  32. Теорема Пифагора
  33. Примеры решений заданий из ОГЭ
  34. 🔍 Видео

Видео:Задание 15 ОГЭ. Медиана равностороннего треугольникаСкачать

Задание 15 ОГЭ. Медиана равностороннего треугольника

Определение медианы треугольника

Медиана – это отрезок, соединяющий вершину треугольника с серединой стороны, расположенной напротив данной вершины.

Найти медиану треугольника огэ

Основание медианы – точка пересечения медианы со стороной треугольника, другими словами, середина этой стороны (точка F).

Видео:Как находить медианы и высоты треугольника || ЕГЭ-2022 || ОГЭ - 2022Скачать

Как находить медианы и высоты треугольника || ЕГЭ-2022 || ОГЭ - 2022

Свойства медианы

Свойство 1 (основное)

Т.к. в треугольнике три вершины и три стороны, то и медиан, соответственно, тоже три. Все они пересекаются в одной точке (O), которая называется центроидом или центром тяжести треугольника.

Найти медиану треугольника огэ

В точке пересечения медиан каждая из них делится в отношении 2:1, считая от вершины. Т.е.:

Свойство 2

Медиана делит треугольник на 2 равновеликих (равных по площади) треугольника.

Найти медиану треугольника огэ

Свойство 3

Три медианы делят треугольник на 6 равновеликих треугольников.

Найти медиану треугольника огэ

Свойство 4

Наименьшая медиана соответствует большей стороне треугольника, и наоборот.

Найти медиану треугольника огэ

  • AC – самая длинная сторона, следовательно, медиана BF – самая короткая.
  • AB – самая короткая сторона, следовательно, медиана CD – самая длинная.

Свойство 5

Допустим, известны все стороны треугольника (примем их за a, b и c).

Найти медиану треугольника огэ

Длину медианы ma, проведенную к стороне a, можно найти по формуле:

Найти медиану треугольника огэ

Видео:ОГЭ ЗАДАНИЕ 16 РАЗДЕЛ ГЕОМЕТРИЯ ДАН РАВНОСТОРОННИЙ ТРЕУГОЛЬНИК И ВЫСОТА / НАЙТИ МЕДИАНУСкачать

ОГЭ ЗАДАНИЕ 16 РАЗДЕЛ ГЕОМЕТРИЯ ДАН РАВНОСТОРОННИЙ ТРЕУГОЛЬНИК И ВЫСОТА / НАЙТИ МЕДИАНУ

Примеры задач

Задание 1
Площадь одной из фигур, образованной в результате пересечения трех медиан в треугольнике, равняется 5 см 2 . Найдите площадь треугольника.

Решение
Согласно свойству 3, рассмотренному выше, в результате пересечения трех медиан образуются 6 треугольников, равных по площади. Следовательно:
S = 5 см 2 ⋅ 6 = 30 см 2 .

Задание 2
Стороны треугольника равны 6, 8 и 10 см. Найдите медиану, проведенную к стороне с длиной 6 см.

Решение
Воспользуемся формулой, приведенной в свойстве 5:

Видео:ЗАДАЧА ДЛЯ ОТЛИЧНИКОВ | Как найти медиану треугольника через стороныСкачать

ЗАДАЧА ДЛЯ ОТЛИЧНИКОВ | Как найти медиану треугольника через стороны

Задание №16 ОГЭ по математике

Видео:Медиана в ОГЭ #огэ #огэматематика #математикаСкачать

Медиана в ОГЭ #огэ #огэматематика #математика

Треугольники, четырёхугольники, многоугольники и их элементы

Перейдем к разбору модуля «Геометрия». В задании 16 проверяется умение выполнять действия с геометрическими фигурами, координатами и векторами. По спецификации ОГЭ здесь могут встретиться задания, связанные с необходимостью нахождения длин, углов и площадей.

Проверьте, что вы не ошибаетесь в определениях тригонометрических функций острого угла в прямоугольном треугольнике.

Кроме того, убедитесь, что все данные задачи отражены на вашем чертеже. При необходимости применяйте теорему Пифагора. Если сюжет задачи развивается в равнобедренном треугольнике, то учтите, что высота, опущенная из вершины такого треугольника, делит его на два равных прямоугольных треугольника и далее задача решается в прямоугольном треугольнике. Если события происходят в окружности, то, помимо всего прочего, надо учесть, что вписанный угол равен половине центрального угла, который опирается на ту же дугу. Пусть треугольник вписан в окружность. Если этот треугольник остроугольный, то центр окружности лежит внутри треугольника. Если этот треугольник тупоугольный, то центр окружности лежит вне треугольника. А если это прямоугольный треугольник, то центр окружности лежит на середине гипотенузы.

В 16 задании нам предстоит продемонстрировать свои знания в нахождении неизвестных элементов треугольника. Это могут быть углы, стороны, высоты, медианы или биссектрисы. Могут встретится задания на нахождение площади.

Теория к заданию №16

Так как задания №16 основаны на теории по теме «треугольники», рассмотрим базовые понятия, определения и формулы.

Вначале предлагаю рассмотреть углы на плоскости:

Найти медиану треугольника огэ

Многие задачи построены на нахождении медиан и биссектрис треугольника:

Биссектриса – отрезок, выходящий из вершины треугольника и делящий угол пополам.

  • Биссектриса делит противолежащую сторону на части , пропорциональные прилежащим сторонам: ab : ac = b : c
  • Биссектриса делит площадь треугольника, пропорционально прилежащим сторонам.
  • Центр окружности, вписанной в треугольник, лежит на пересечении биссектрис треугольника.

Найти медиану треугольника огэ

Медиана:

Найти медиану треугольника огэ

Теперь вспомним основные формулы нахождения площади треугольника:

Найти медиану треугольника огэ

Во многих задачах встречается понятие средняя линия:

Средняя линия – отрезок, соединяющий середины двух сторон треугольника.

  • Средняя линия параллельна третьей стороне и равна её половине.
  • Средняя линия отсекает подобный треугольник, площадь которого равна одной четверти от исходного.

Найти медиану треугольника огэ

Теперь рассмотрим частные случаи треугольников — равнобедренный, равносторонний, прямоугольный.

Перейдем к рассмотрению равнобедренного треугольника:

Равнобедренный треугольник — треугольник, у которого две стороны равны.

Найти медиану треугольника огэ

Свойства равнобедренного треугольника:

  • Углы, при основании треугольника, равны.
  • Высота, проведенная из вершины, является биссектрисой и медианой.

Рассмотрим равносторонний треугольник:

Равносторонний треугольник — треугольник, у которого все стороны равны.

  • Все углы равны 60°.
  • Каждая из высот является одновременно биссектрисой и медианой.
  • Центры описанной и вписанной окружностей совпадают.

Найти медиану треугольника огэ

Прямоугольный треугольник:

Найти медиану треугольника огэ

Разбор типовых вариантов заданий №16 ОГЭ по математике

Первый вариант задания

В треугольнике два угла равны 73° и 48°. Найдите его третий угол. Ответ дайте в градусах.

Решение:

Для решения этого задания достаточно знать правило — сумма углов в треугольнике равна 180°.

Нам известны два угла, значит можем найти третий:

180 — 73 — 48 = 59

Второй вариант задания

Точки M и N являются серединами сторон AB и BC треугольника ABC, сторона AB равна 20, сторона BC равна 58, сторона AC равна 64. Найдите MN.

Решение:

Для решения этой задачи не нужно пользоваться всеми данными в условии. Для успешного решения необходимо знать, что такое средняя линия треугольника.

Средняя линия — это линия соединяющая середины сторон и параллельная основанию.

Средняя линия равна половине основания, которому она параллельна.

Таким образом, если точки M и N являются серединами сторон AB и BC, значит эта линия параллельна AC — третьей стороне. А это в свою очередь означает, что она равна половине AC:

MN =½ • AC = 64 / 2 = 32

Третий вариант задания

В треугольнике ABC известно, что AB = BC, ∠ABC = 122°. Найдите угол BCA. Ответ дайте в градусах.

Решение:

Если в треугольнике две стороны равны — значит он равнобедренный. А в равнобедренном треугольнике углы при основании равны. Так как сумма углов в треугольнике равна 180°, угол в вершине равен 122°, значит сумма углов при основании равна:

Так как углы при основании равны, значит угол BCA равен углу BAC:

58° = ∠BCA + ∠BAC = 2 ∠BCA

Четвертый вариант задания

Сторона равностороннего треугольника равна 10√3. Найдите его медиану.

Решение:

Для решения этой задачи необходимо знать формулу медианы в равностороннем треугольнике, или уметь выводить её из теоремы Пифагора. В данном случае мы воспользуемся готовой формулой, и я советую вам её запомнить, чтобы не тратить время на вывод в каждом случае:

Где m — медиана в равностороннем треугольнике, а a — сторона. Таким образом, для решения данной задачи подставим значение в формулу:

m = ( 10√3 • √3 )/ 2 = ( 10 • 3 )/ 2 = 30 / 2 = 15

Пятый вариант задания

Один из острых углов прямоугольного треугольника равен 23°. Найдите второй острый угол. Ответ дайте в градусах.

Решение:

Так как сумма углов в треугольнике равна 180°, а в прямоугольном треугольнике один из углов прямой, то сумма двух острых углов равна 90°. Отсюда можно вывести следующее правило:

Сумма острых углов в прямоугольном треугольнике равна 90°.

Следовательно, второй острый угол равен:

Шестой вариант задания

В треугольнике ABC известно, что AC = 56, BM — медиана, BM = 48. Найдите AM.

Решение:

Для решения необходимо вспомнить определение медианы.

Медиана — отрезок, проведенный из вершины и делящий противоположную сторону на два равных отрезка.

Таким образом, медиана BM делит сторону AC (противоположную вершине B) пополам, следовательно^

AM = ½ AC = ½ 56 = 28

Седьмой вариант задания

Два катета прямоугольного треугольника равны 15 и 4. Найдите его площадь.

Решение:

Формула площади для прямоугольного треугольника выглядит следующим образом:

Площадь прямоугольного треугольника равна половине произведения его катетов.

Это следует из того, что один из катетов является высотой к основанию, которым является второй катет.

Исходя из вышесказанного, можем решить задачу:

Восьмой вариант задания

Сторона равностороннего треугольника равна 12√3. Найдите его высоту.

Решение:

Вспоминаем, что в равностороннем треугольнике высота является и медианой и биссектрисой.

Для медианы, а значит и для высоты, формулу я приводил чуть выше:

m = ( 12√3 • √3 )/ 2 = ( 12 • 3 )/ 2 = 36 / 2 = 18

Девятый вариант задания

Катеты прямоугольного треугольника равны 12 и 16. Найдите гипотенузу этого треугольника.

Решение:

Воспользуемся теоремой Пифагора:

c² = 12² + 16² = 144 + 256 = 400

Десятый вариант задания

Биссектриса равностороннего треугольника равна 11√3. Найдите его сторону.

Решение:

До этого мы искали медиану, биссектрису или высоту равностороннего треугольника по формуле:

Здесь же нам необходимо решить обратную задачу, найти a, если известно m.

a = ( 2 • m ) / √3 = ( 2 • 11 • √3 ) / √3 = 22

Демонстрационный вариант ОГЭ 2019

В равнобедренном треугольнике ABC с основанием AC внешний угол при вершине C равен 123° . Найдите величину угла ВАС. Ответ дайте в градусах.

Найти медиану треугольника огэ

Решение:

Для решения этого задания нужно помнить два факта:

  • Внутренний угол с внешним углом дают в сумме 180°
  • Углы при основании равнобедренного треугольника равны.

Из первого пункта следует, что угол BCA = 180 — 123 = 57°

Из второго — что ∠BCA = ∠BAC = 57°

Видео:Длина медианы треугольникаСкачать

Длина медианы треугольника

Геометрия. Урок 3. Треугольники

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Найти медиану треугольника огэ

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение треугольника
  • Виды треугольников
  • Отрезки в треугольнике

Видео:ОГЭ 2023. Задание 23. Найти медиану прямоугольного треугольникаСкачать

ОГЭ 2023. Задание 23. Найти медиану прямоугольного треугольника

Определение треугольника

Треугольник – многоугольник с тремя сторонами и тремя углами.

Найти медиану треугольника огэ

Угол ∠ A – угол, образованный сторонами A B и A C и противолежащий стороне B C .

Угол ∠ B – угол, образованный сторонами B A и B C и противолежащий стороне A C .

Угол ∠ C – угол, образованный сторонами C B и C A и противолежащий стороне A B .

Видео:Медиана прямоугольного треугольника— Геометрия ОГЭСкачать

Медиана прямоугольного треугольника— Геометрия ОГЭ

Виды треугольников

Треугольник остроугольный , если все три угла в треугольнике острые.

Треугольник прямоугольный , если у него один из углов прямой ( = 90 ° ) .

Треугольник тупоугольный , если у него один из углов тупой.

Найти медиану треугольника огэ Найти медиану треугольника огэНайти медиану треугольника огэ

Основные свойства треугольника:

  • Против большей стороны лежит больший угол.
  • Против равных сторон лежат равные углы.
  • Сумма углов в треугольнике равна 180 ° .
  • Если продолжить одну из сторон треугольника, например, A C , и взять на продолжении стороны точку D , образуется внешний угол ∠ B C D к исходному углу ∠ A C B .

Видео:Задача за секунду. ОГЭ геметрия. Медиана прямоугольного треугольникаСкачать

Задача за секунду. ОГЭ геметрия. Медиана прямоугольного треугольника

Отрезки в треугольнике

Биссектриса угла – луч, выходящий из вершины угла и делящий его пополам.

Биссектриса треугольника – отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне.

Свойства биссектрис треугольника:

  • Биссектриса угла – геометрическое место точек, равноудаленных от сторон угла.
  • Биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам:

Замечание: биссектриса угла – это луч, а биссектриса треугольника – отрезок.

Медиана треугольника – отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.

Свойства медиан треугольника:

  • Медиана разбивает треугольник на два равновеликих треугольника (два треугольника, имеющих одинаковую площадь).
  • Медианы треугольника пересекаются в одной точке. Точка пересечения медиан делит их в отношении 2:1, считая от вершины.

Высота треугольника – это перпендикуляр, проведенный из вершины угла треугольника к прямой, содержащей противолежащую сторону этого треугольника.

Если треугольник остроугольный, то все три высоты будут лежать внутри треугольника. Если треугольник тупоугольный, то высоты, проведенные из вершин острых углов будут лежать вне треугольника, а высота, проведенная из вершины тупого угла будет лежать внутри треугольника.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Свойство средней линии треугольника: средняя линия параллельна одной из его сторон и равна половине этой стороны.

Всего в треугольнике можно провести три средние линии. Три средние линии разбивают исходный треугольник на четыре равных треугольника. Площадь каждого маленького треугольника будет равна четверти площади большого треугольника.

Видео:Задание 9 ОГЭ от ФИПИСкачать

Задание 9 ОГЭ от ФИПИ

Площадь треугольника

Площадь произвольного треугольника можно найти следующими способами:

    Полупроизведение стороны на высоту, проведенную к этой стороне.

Найти медиану треугольника огэ

Найти медиану треугольника огэ

Найти медиану треугольника огэ

Видео:Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16Скачать

Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16

Равнобедренный треугольник

Равнобедренным называется треугольник, у которого две стороны равны.

Равнобедренный треугольник может быть остроугольным, прямоугольным и тупоугольным.

Найти медиану треугольника огэ Найти медиану треугольника огэНайти медиану треугольника огэ

Свойства равноберенного треугольника:

  • В равнобедренном треугольнике углы при основании равны.
  • В равнобедренном треугольнике медиана, высота и биссектриса, проведенные к основанию, совпадают.

Видео:Как найти медиану, зная стороны треугольника? Удвоение медианы.Скачать

Как найти медиану, зная стороны треугольника? Удвоение медианы.

Равносторонний треугольник

Равносторонним называется треугольник, у которого все стороны и все углы равны.

Площадь равностороннего треугольника находится по формуле S = a 2 3 4

Высота равностороннего треугольника находится по формуле h = a 3 2

Видео:длина медианы #SHORTSСкачать

длина медианы #SHORTS

Прямоугольный треугольник

Треугольник называется прямоугольным, если у него один из углов равен 90 ° .

Свойства прямоугольного треугольника:

  • Сумма двух острых углов треугольника равна 90 ° .
  • Катет, лежащий напротив угла в 30 ° , равен половине гипотенузы.
  • Если катет равен половине гипотенузы, он лежит напротив угла в 30 ° .

Видео:ОГЭ 16🔴Скачать

ОГЭ 16🔴

Теорема Пифагора

Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

У прямоугольного треугольника катеты перпендикулярны друг другу, следовательно, площадь можно найти по формуле:

Видео:8. Медиана треугольника и её свойства.Скачать

8. Медиана треугольника и её свойства.

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с треугольниками

🔍 Видео

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Медиана к гипотенузе. Прямоугольный треугольник. Подготовка к ОГЭ. Задание 23.Скачать

Медиана к гипотенузе. Прямоугольный треугольник. Подготовка к ОГЭ. Задание 23.

№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)Скачать

№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)

Все факты о медиане треугольника для ЕГЭСкачать

Все факты о медиане треугольника для ЕГЭ

Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы
Поделиться или сохранить к себе: