Нахождение угла треугольника через синус

Теорема синусов

Нахождение угла треугольника через синус

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Доказательство теоремы синусов

Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:

Нахождение угла треугольника через синус

Формула теоремы синусов:

Нахождение угла треугольника через синус

Докажем теорему с помощью формулы площади треугольника через синус его угла.

Нахождение угла треугольника через синус

Из этой формулы мы получаем два соотношения:


    Нахождение угла треугольника через синус

Нахождение угла треугольника через синус
На b сокращаем, синусы переносим в знаменатели:
Нахождение угла треугольника через синус

  • Нахождение угла треугольника через синус
    bc sinα = ca sinβ
    Нахождение угла треугольника через синус
  • Из этих двух соотношений получаем:

    Нахождение угла треугольника через синус

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Видео:ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

    ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    Нахождение угла треугольника через синус

    Нахождение угла треугольника через синус

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Нахождение угла треугольника через синус

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Нахождение угла треугольника через синус

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Нахождение угла треугольника через синус

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° — α.

    Нахождение угла треугольника через синус

    Вспомним свойство вписанного в окружность четырёхугольника:

    Нахождение угла треугольника через синус

    Также известно, что sin(180° — α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° — α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° — 60°) = sin60° = 3/√2;
    • sin150° = sin(180° — 30°) = sin30° = 1/2;
    • sin135° = sin(180° — 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    Нахождение угла треугольника через синус

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Нахождение угла треугольника через синус

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

    Синус, косинус, тангенс, котангенс за 5 МИНУТ

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    Нахождение угла треугольника через синус

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Нахождение угла треугольника через синус

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    Нахождение угла треугольника через синус

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    Нахождение угла треугольника через синус

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    Нахождение угла треугольника через синус

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Нахождение угла треугольника через синус

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Нахождение угла треугольника через синус

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° — α)

    Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα

    Видео:Синус, косинус произвольного угла. 9 класс.Скачать

    Синус, косинус произвольного угла. 9 класс.

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° — 45° — 15° = 120°

  • Сторону AC найдем по теореме синусов:
    Нахождение угла треугольника через синус
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Нахождение угла треугольника через синус

    Нахождение угла треугольника через синус

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Видео:8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольникаСкачать

    8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольника

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >
    Нахождение угла треугольника через синус

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    Видео:Нахождение синуса угла треугольникаСкачать

    Нахождение синуса угла треугольника

    Решение треугольников онлайн

    С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.

    Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:

    1. Три стороны треугольника.
    2. Две стороны треугольника и угол между ними.
    3. Две стороны и угол противостоящий к одному из этих сторон треугольника.
    4. Одна сторона и любые два угла.

    Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.

    Видео:Решение задачи с применением теоремы синусовСкачать

    Решение задачи с применением теоремы синусов

    Решение треугольника по трем сторонам

    Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем Нахождение угла треугольника через синус.

    Нахождение угла треугольника через синус
    Нахождение угла треугольника через синус
    Нахождение угла треугольника через синус
    Нахождение угла треугольника через синус(1)
    Нахождение угла треугольника через синус(2)

    Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения

    Нахождение угла треугольника через синус.

    Пример 1. Известны стороны треугольника ABC: Нахождение угла треугольника через синусНайти Нахождение угла треугольника через синус(Рис.1).

    Решение. Из формул (1) и (2) находим:

    Нахождение угла треугольника через синусНахождение угла треугольника через синус.
    Нахождение угла треугольника через синусНахождение угла треугольника через синус.
    Нахождение угла треугольника через синус, Нахождение угла треугольника через синус.

    И, наконец, находим угол C:

    Нахождение угла треугольника через синусНахождение угла треугольника через синус

    Видео:ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого углаСкачать

    ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого угла

    Решение треугольника по двум сторонам и углу между ними

    Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.

    Нахождение угла треугольника через синус

    Найдем сторону c используя теорему косинусов:

    Нахождение угла треугольника через синус.
    Нахождение угла треугольника через синус.

    Далее, из формулы

    Нахождение угла треугольника через синус.
    Нахождение угла треугольника через синус.(3)

    Далее из (3) с помощью калькулятора находим угол A.

    Поскольку уже нам известны два угла то находим третий:

    Нахождение угла треугольника через синус.

    Пример 2. Известны две стороны треугольника ABC: Нахождение угла треугольника через синуси Нахождение угла треугольника через синус(Рис.2). Найти сторону c и углы A и B.

    Решение. Иcпользуя теорму косинусов найдем сторону c:

    Нахождение угла треугольника через синус,
    Нахождение угла треугольника через синусНахождение угла треугольника через синусНахождение угла треугольника через синус.

    Из формулы (3) найдем cosA:

    Нахождение угла треугольника через синусНахождение угла треугольника через синус
    Нахождение угла треугольника через синус.

    Поскольку уже нам известны два угла то находим третий:

    Нахождение угла треугольника через синусНахождение угла треугольника через синус.

    Видео:9 класс, 15 урок, Решение треугольниковСкачать

    9 класс, 15 урок, Решение треугольников

    Решение треугольника по стороне и любым двум углам

    Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.

    Нахождение угла треугольника через синус

    Так как, уже известны два угла, то можно найти третий:

    Нахождение угла треугольника через синус.

    Далее, для находждения сторон b и c воспользуемся тероемой синусов:

    Нахождение угла треугольника через синус, Нахождение угла треугольника через синус.
    Нахождение угла треугольника через синус, Нахождение угла треугольника через синус.

    Пример 3. Известна одна сторона треугольника ABC: Нахождение угла треугольника через синуси углы Нахождение угла треугольника через синус(Рис.3). Найти стороны b и c и угол С.

    Решение. Поскольку известны два угла, то легко можно найти третий угол С:

    Нахождение угла треугольника через синусНахождение угла треугольника через синус

    Найдем сторону b. Из теоремы синусов имеем:

    Нахождение угла треугольника через синус
    Нахождение угла треугольника через синус

    Найдем сторону с. Из теоремы синусов имеем:

    Видео:СИНУС И КОСИНУС ЛЮБЫХ УГЛОВ | ТригонометрияСкачать

    СИНУС И КОСИНУС ЛЮБЫХ УГЛОВ | Тригонометрия

    Таблица синусов, найти угол синуса

    Тригонометрические функции: синус угла

    Зачем надо знать значение синуса? Представим ситуацию: известен один из углов (А=60⁰), вписанный в прямоугольный треугольник, и длина гипотенузы. Больше нет никакой информации. Надо узнать вычислить дальний к углу (А) катет. Как поступить?

    Нахождение угла треугольника через синус

    Ситуация очень простая: смотрим таблицы Брадиса, находим значение sin(60⁰)=0,866, подставляем данные в формулу тригонометрической функции и решаем линейное уравнение. Из школьного курса известно, что sin угла – это отношение дальнего к углу, в данном случае А=60⁰, катета к гипотенузе.

    Произвести все расчеты проще, если воспользоваться онлайн калькулятором на сайте. Таким образом можно вычислить длину любой из сторон прямоугольного треугольника. Знаем угол – значит, знаем sin этого угла. И наоборот, знаем sin – найти угол не составит проблемы.

    🔍 Видео

    9 класс, 13 урок, Теорема синусовСкачать

    9 класс, 13 урок, Теорема синусов

    Нахождение стороны прямоугольного треугольникаСкачать

    Нахождение стороны прямоугольного треугольника

    Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.Скачать

    Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.

    Соотношения между сторонами и углами треугольника. 7 класс.Скачать

    Соотношения между сторонами и углами треугольника. 7 класс.

    Нахождение косинуса и синуса угла в прямоугольном треугольникеСкачать

    Нахождение косинуса и синуса угла в прямоугольном треугольнике

    Геометрия 8 класс (Урок№21 - Косинус, синус и тангенс острого угла прямоугольного треугольника.)Скачать

    Геометрия 8 класс (Урок№21 - Косинус, синус и тангенс острого угла прямоугольного треугольника.)

    7 класс, 31 урок, Теорема о сумме углов треугольникаСкачать

    7 класс, 31 урок, Теорема о сумме углов треугольника

    9 класс, 12 урок, Теорема о площади треугольникаСкачать

    9 класс, 12 урок, Теорема о площади треугольника

    По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

    По силам каждому ★ Найдите стороны треугольника на рисунке

    ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по МатематикеСкачать

    ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по Математике
    Поделиться или сохранить к себе: