Медиана треугольника равна его высоте

Медиана треугольника является его высотой

Какой вывод можно сделать из того, что медиана треугольника является его высотой?

Если медиана треугольника является его высотой, то этот треугольник — равнобедренный.

Медиана треугольника равна его высотеДано:

CF — высота и медиана

Сначала наметим план доказательства. Что означает, что треугольник равнобедренный? Это значит, что у него две стороны равны. Значит, нам надо доказать, что в ∆ ABC две стороны равны: AC=BC. Равенство сторон следует из равенства треугольников. Следовательно, нам нужно будет доказать равенство двух треугольников. Каких? ∆ AFC и ∆ BFC.

Что нам известно их условия задачи? CF — высота, значит, СF перпендикулярна AB, поэтому углы AFC и BFC — прямые.

Еще знаем, что CF — медиана. Значит, она делит стороны AB на две равные части: AF=BF. Таким образом, два пункта из трех для доказательства равенства треугольников уже есть.

Медиана треугольника равна его высотеВыделим треугольники разными цветами.

Этот прием позволяет увидеть, что сторона СF — общая.

Три пункта есть.

Переходим к записи доказательства.

Рассмотрим ∆ AFC и ∆ BFC.

1) ∠AFC=∠BFC=90º (так как CF — высота треугольника ABC по условию).

2) AF=BF (так как CF — медиана треугольника ABC по условию).

3) Сторона CF — общая.

Следовательно, ∆ AFC = ∆ BFC (по двум сторонам и углу между ними).

Из равенства треугольников следует равенство соответствующих сторон: AC=BC. Значит, ∆ ABC — равнобедренный с основанием AB (по определению равнобедренного треугольника).

Что и требовалось доказать.

Если в треугольнике все высоты и медианы совпадают, то треугольник — равносторонний (каждые две стороны между собой равны, следовательно, равны все три стороны).

Видео:№110. Докажите, что если медиана треугольника совпадает с его высотой, то треугольникСкачать

№110. Докажите, что если медиана треугольника совпадает с его высотой, то треугольник

Треугольник. Важные факты о высоте, биссектрисе и медиане

Определения

Медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Биссектриса треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны.

Высота треугольника – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

Теорема

В любом треугольнике высоты (или их продолжения) пересекаются в одной точке (рис. 1 и 2), биссектрисы пересекаются в одной точке (рис. 3), медианы пересекаются в одной точке (рис. 4).

Медиана треугольника равна его высоте

Теорема

В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой.

Медиана треугольника равна его высоте

Верны и другие утверждения:
В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Теорема

В любом треугольнике медианы точкой пересечения делятся в отношении (2:1) , считая от вершины.

Доказательство

Пусть (AD) и (BE) – медианы в треугольнике (ABC) , (O) – точка пересечения (AD) и (BE) .

Медиана треугольника равна его высоте

(DE) – средняя линия в треугольнике (ABC) , тогда (DEparallel AB) , значит (angle ADE = angle BAD) , (angle BED = angle ABE) , следовательно, треугольники (ABO) и (DOE) подобны (по двум углам).

Из подобия треугольников (ABO) и (DOE) : (dfrac = dfrac = dfrac) .

Для других медиан треугольника (ABC) требуемое свойство доказывается аналогично.

Теорема

Медиана треугольника делит его на два равновеликих треугольника (равновеликие треугольники – это треугольники, у которых площади равны).

Доказательство

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию: (S_ = 0,5cdot ACcdot h) .

Медиана треугольника равна его высоте

Пусть (BD) – медиана в треугольнике (ABC) , тогда (AD = DC) .

(S_ = 0,5cdot ADcdot h) ,

(S_ = 0,5cdot DCcdot h) .

Так как (AD = DC) , то (S_ = S_) , что и требовалось доказать.

Теорема

В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.

Верно и обратное: если медиана равна половине стороны, к которой она проведена, то она проведена из вершины прямого угла.

Доказательство

1) Докажем, что если (triangle ABC) – прямоугольный, то (BM=frac12AC) , где (M) – середина гипотенузы (AC) .

Медиана треугольника равна его высоте

Достроим треугольник (ABC) до прямоугольника (ABCD) и проведем диагональ (BD) . Т.к. в прямоугольнике диагонали делятся точкой пересечения пополам и равны, то (ACcap BD=M) , причем (AM=MC=BM=MD) , чтд.

2) Докажем, что если в треугольнике (ABC) медиана (BM=AM=MC) , то (angle B=90^circ) .

Медиана треугольника равна его высоте

Треугольники (AMB) и (CMB) – равнобедренные, следовательно, (angle BAM=angle ABM=alpha, quad angle MBC=angle MCB=beta) .

Т.к. сумма углов в треугольнике равна (180^circ) , то для (triangle ABC) :

(alpha+(alpha+beta)+beta=180^circ Rightarrow alpha+beta=90^circ Rightarrow angle B=90^circ) , чтд.

Теорема

Биссектриса треугольника делит его сторону на части, пропорциональные прилежащим сторонам:

Медиана треугольника равна его высоте

Верно и обратное: если отрезок, проведенный из вершины треугольника к стороне, делит эту сторону на отрезки, пропорциональные прилежащим сторонам, то это биссектриса.

Доказательство

Площади треугольников, у которых есть равные углы, относятся как произведения сторон, образующих эти углы, то есть [dfrac<S_><S_> = dfrac = dfrac]

В итоге (dfrac = dfrac<S_><S_> = dfrac) , откуда (dfrac = dfrac) , что и требовалось доказать.

Теорема

Если точка равноудалена от сторон угла, то она лежит на его биссектрисе.

Верно и обратное: если точка лежит на биссектрисе угла, то она равноудалена от его сторон.

Медиана треугольника равна его высоте

Доказательство

1) Докажем, что если (KA=KB) , то (OK) – биссектриса.
Рассмотрим треугольники (AOK) и (BOK) : они равны по катету и гипотенузе, следовательно, (angle AOK=angle BOK) , чтд.

2) Докажем, что если (OK) – биссектриса, то (KA=KB) .
Аналогично треугольники (AOK) и (BOK) равны по гипотенузе и острому углу, следовательно, (KA=KB) , чтд.

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Удвоение медианы

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Медиана треугольника равна его высоте

Этот урок будет посвящен теме «Удвоение медианы». На этом занятии мы рассмотрим треугольник, в котором проведена медиана. Продлим ее на длину, равную исходному значению медианы и соединим вершины треугольника с полученной удвоенной медианой. В результате мы получим новый четырехугольник, который и рассмотрим.

🌟 Видео

Задание 15 ОГЭ. Медиана равностороннего треугольникаСкачать

Задание 15 ОГЭ. Медиана равностороннего треугольника

№133. Докажите, что если биссектриса треугольника совпадает с его высотой, то треугольникСкачать

№133. Докажите, что если биссектриса треугольника совпадает с его высотой, то треугольник

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

8. Медиана треугольника и её свойства.Скачать

8. Медиана треугольника и её свойства.

Геометрия Докажите, что если медиана треугольника совпадает с его биссектрисой, то этот треугольникСкачать

Геометрия Докажите, что если медиана треугольника совпадает с его биссектрисой, то этот треугольник

№239. Докажите, что в треугольнике медиана не меньше высоты, проведенной из той же вершины.Скачать

№239. Докажите, что в треугольнике медиана не меньше высоты, проведенной из той же вершины.

Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16Скачать

Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16

Длина медианы треугольникаСкачать

Длина медианы треугольника

Построение медианы в треугольникеСкачать

Построение медианы в треугольнике

Задание 9 ОГЭ от ФИПИСкачать

Задание 9 ОГЭ от ФИПИ

Все факты о медиане треугольника для ЕГЭСкачать

Все факты о медиане треугольника для ЕГЭ

17. Медианы, биссектрисы и высоты треугольникаСкачать

17. Медианы, биссектрисы и высоты треугольника

Медиана треугольника. Построение. Свойства.Скачать

Медиана треугольника. Построение. Свойства.

Медианы, биссектрисы и высоты треугольника | Геометрия 7-9 класс #18 | ИнфоурокСкачать

Медианы, биссектрисы и высоты треугольника | Геометрия 7-9 класс #18 | Инфоурок

Найдите площадь треугольника, если его медианы равны 3, 4 и 5Скачать

Найдите площадь треугольника, если его медианы равны 3, 4 и 5

Высота равностороннего треугольника равна 13√3 ... | ОГЭ 2017 | ЗАДАНИЕ 9 | ШКОЛА ПИФАГОРАСкачать

Высота равностороннего треугольника равна 13√3 ... | ОГЭ 2017 | ЗАДАНИЕ 9 | ШКОЛА ПИФАГОРА
Поделиться или сохранить к себе: