Медиана параллелограмма отсекает равнобедренный треугольник

Биссектриса параллелограмма отсекает равнобедренный треугольник

Биссектриса параллелограмма отсекает от него равнобедренный треугольник.

Медиана параллелограмма отсекает равнобедренный треугольник

Дано: ABCD — параллелограмм,

AF — биссектриса ∠BAD,

Доказать: ∆ ABF — равнобедренный.

1) ∠BAF=∠DAF (так как AF — биссектриса ∠BAD по условию).

2) ∠BFA=∠DAF (как внутренние накрест лежащие углы при BC ∥ AD м секущей AF).

Медиана параллелограмма отсекает равнобедренный треугольник

3) Следовательно, ∠BAF=∠BFA.

4) Следовательно, треугольник ABF — равнобедренный с основанием AF (по признаку).

5) Следовательно, AB=BF.

Что и требовалось доказать.

Хотя равенство сторон AB и BF доказывать не просили, доказательство того, что биссектриса параллелограмма отсекает от него равнобедренный треугольник, нужно как раз для обоснования равенства одной стороны и отсеченного отрезка на другой стороне параллелограмма.

Видео:Биссектриса параллелограммаСкачать

Биссектриса параллелограмма

2 Comments

Пункт 3 доказательства на чем основывается.

Свойство транзитивности: из a=b, b=c следует a=c.
Соответственно, из ∠BAF=∠DAF и ∠BFA=∠DAF следует ∠BAF=∠BFA.

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Параллелограмм: свойства и признаки

Медиана параллелограмма отсекает равнобедренный треугольник

О чем эта статья:

Видео:Биссектриса угла параллелограмма ▶ (Мини-ликбез №5)Скачать

Биссектриса угла параллелограмма ▶ (Мини-ликбез №5)

Определение параллелограмма

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны и равны. Как выглядит параллелограмм:

Частные случаи параллелограмма: ромб, прямоугольник, квадрат.

Диагонали — отрезки, которые соединяют противоположные вершины.

Свойства диагоналей параллелограмма:

  1. В параллелограмме точка пересечения диагоналей делит их пополам.
  2. Любая диагональ параллелограмма делит его на два равных треугольника.
  3. Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон.

Биссектриса угла параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.

Свойства биссектрисы параллелограмма:

  1. Биссектриса параллелограмма отсекает от него равнобедренный треугольник.
  2. Биссектрисы углов, прилежащих к одной стороне параллелограмма пересекаются под прямым углом.
  3. Отрезки биссектрис противоположных углов равны и параллельны.

Как найти площадь параллелограмма:

  1. S = a × h, где a — сторона, h — высота.
    Медиана параллелограмма отсекает равнобедренный треугольник
  2. S = a × b × sinα, где a и b — две стороны, sinα — синус угла между ними. Для ромба формула примет вид S = a 2 × sinα.
    Медиана параллелограмма отсекает равнобедренный треугольник
  3. Для ромба: S = 0,5 × (d1 × d2), где d1 и d2 — две диагонали.
    Для параллелограмма: S = 0,5 × (d1 × d2) × sinβ, где β — угол между диагоналями.
    Медиана параллелограмма отсекает равнобедренный треугольник

Периметр параллелограмма — сумма длины и ширины, умноженная на два.

P = 2 × (a + b), где a — ширина, b — высота.

У нас есть отличные дополнительные курсы по математике для учеников с 1 по 11 классы!

Видео:🔥 Свойства МЕДИАНЫ #shortsСкачать

🔥 Свойства МЕДИАНЫ #shorts

Свойства параллелограмма

Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.

Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:

  1. Противоположные стороны параллелограмма равны.
    ABCD — параллелограмм, значит, AB = DC, BC = AD.
    Медиана параллелограмма отсекает равнобедренный треугольник
  2. Противоположные углы параллелограмма равны.
    ABCD — параллелограмм, значит, ∠A = ∠C, ∠B = ∠D.
    Медиана параллелограмма отсекает равнобедренный треугольник
  3. Диагонали параллелограмма точкой пересечения делятся пополам.
    ABCD — параллелограмм, AC и BD — диагонали, AC∩BD=O, значит, BO = OD, AO = OC.
    Медиана параллелограмма отсекает равнобедренный треугольник
  4. Диагональ делит параллелограмм на два равных треугольника.
    ABCD — параллелограмм, AC — диагональ, значит, △ABC = △CDA.
    Медиана параллелограмма отсекает равнобедренный треугольник
  5. Сумма углов в параллелограмме, прилежащих к одной стороне, равна 180 градусам.
    ABCD — параллелограмм, значит, ∠A + ∠D = 180°.
    Медиана параллелограмма отсекает равнобедренный треугольник
  6. В параллелограмме диагонали d1, d2 и стороны a, b связаны следующим соотношением: d1 2 + d2 2 = 2 × (a 2 + b 2 ).
    Медиана параллелограмма отсекает равнобедренный треугольник

А сейчас докажем теорему, которая основана на первых двух свойствах.

Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.

Медиана параллелограмма отсекает равнобедренный треугольник

В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.

Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:

  1. AB = CD как противоположные стороны параллелограмма.
  2. ∠1 = ∠2 как накрест лежащие углы при пересечении секущей AC параллельных прямых AB и CD; ∠3 = ∠4 как накрест лежащие углы при пересечении секущей BD параллельных прямых AB и CD.
  3. Следовательно, треугольник AOB равен треугольнику COD по второму признаку равенства треугольников, то есть по стороне и прилежащим к ней углам, из чего следует:
    • CO = AO
    • BO = DO

    Медиана параллелограмма отсекает равнобедренный треугольник

Теорема доказана. Наше предположение верно.

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Признаки параллелограмма

Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.

Первый признак параллелограмма. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.

Докажем 1 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB || CD
  • AB = CD

Медиана параллелограмма отсекает равнобедренный треугольник

Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.

Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.

Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:

  1. AC — общая сторона;
  2. По условию AB = CD;
  3. ∠1 = ∠2 как внутренние накрест лежащие углы при пересечении параллельных прямых AB и CD секущей АС.

Медиана параллелограмма отсекает равнобедренный треугольник

Шаг 3. Из равенства треугольников также следует:

Медиана параллелограмма отсекает равнобедренный треугольник

Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.

Вот так быстро мы доказали первый признак.

Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.

Докажем 2 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB = CD
  • BC = AD

Медиана параллелограмма отсекает равнобедренный треугольник

Шаг 2. Проведем диагональ AC и рассмотрим треугольники ABC и CDA:

  • AC — общая сторона;
  • AB = CD по условию;
  • BC = AD по условию.

Из этого следует, что треугольники ABC и CDA равны по третьему признаку, а именно по трем сторонам.

Шаг 3. Из равенства треугольников следует:

А так как эти углы — накрест лежащие при сторонах BC и AD и диагонали AC, значит, стороны BC и AD параллельны.

Эти углы — накрест лежащие при сторонах AB и CD и секущей AC. Поэтому стороны AB и CD тоже параллельны. Значит, четырехугольник ABCD — параллелограмм, ЧТД.

Доказали второй признак.

Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Докажем 3 признак параллелограмма:

Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:

  • CO = OA;
  • DO = BO;
  • углы между ними равны, как вертикальные, то есть угол AOB равен углу COD.

Медиана параллелограмма отсекает равнобедренный треугольник

Шаг 2. Из равенства треугольников следует, что CD = AB.

Эти стороны параллельны CD || AB, по равенству накрест лежащих углов: ∠1 = ∠2 (следует из равенства треугольников AOB и COD).

Медиана параллелограмма отсекает равнобедренный треугольник

Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.

Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все-таки связано с параллельностью противоположных сторон.

Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Параллелограмм.

Медиана параллелограмма отсекает равнобедренный треугольник

Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны.

Свойства параллелограмма:

  1. В параллелограмме противоположные стороны и противоположные углы равны.
  2. Диагонали параллелограмма точкой пересечения делятся пополам.
  3. Диагональ параллелограмма делит параллелограмм на два равных треугольника.
  4. Точка пересечения диагоналей — центр симметрии параллелограмма.
  5. Биссектриса любого угла параллелограмма отсекает от него равнобедренный треугольник.
  6. Биссектрисы параллелограмма, проведенные из противоположных углов, параллельны.
  7. Биссектрисы параллелограмма, проведенные из соседних углов, перпендикулярны.
  8. Угол между высотами, проведенными из тупого угла параллелограмма, равен острому углу параллелограмма.
  9. Угол между высотами, проведенными из острого угла параллелограмма, равен тупому углу параллелограмма.
  10. Сумма квадратов диагоналей параллелограмма равна сумме квадратов сторон параллелограмма.
  11. Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°.

Частные случаи параллелограмма: прямоугольник, квадрат, ромб. Следовательно, все эти фигуры обладают свойствами, присущими параллелограмму.

Прямоугольник — параллелограмм, у которого все углы равны.

Отличительное свойство прямоугольника: диагонали прямоугольника равны.

Ромб — параллелограмм, у которого все стороны равны.

Отличительное свойство ромба: диагонали ромба взаимно перпендикулярны и делят его углы пополам.

Квадрат — параллелограмм, у которого все стороны и углы равны.

Отличительное свойство квадрата: диагонали квадрата равны, взаимно перпендикулярны и делят углы квадрата пополам.

Площадь параллелограмма:

  1. Площадь параллелограмма через сторону и высоту, проведенной к этой стороне: S=a·ha=b·hb.
  2. Площадь параллелограмма через стороны и угол между ними: S=a·b·sinφ.
  3. Площадь параллелограмма через диагонали и угол между ними: S=0,5·d1·d2·sinφ.
  4. Площадь параллелограмма через радиус вписанной окружности и сторону(верна только для параллелограмма, в который можно вписать окружность):S=2·a·r.
  5. Площадь параллелограмма через радиус вписанной окружности и угол между сторонами(верна только для параллелограмма, в который можно вписать окружность):S=4r 2 /sinφ.

🔥 Видео

№158. Основание равнобедренного треугольника равно 8 см. Медиана, проведенная к боковой сторонеСкачать

№158. Основание равнобедренного треугольника равно 8 см. Медиана, проведенная к боковой стороне

7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Свойство биссектриссы параллелограммаСкачать

Свойство биссектриссы параллелограмма

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Параллелограмм и биссектрисаСкачать

Параллелограмм и биссектриса

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

№110. Докажите, что если медиана треугольника совпадает с его высотой, то треугольникСкачать

№110. Докажите, что если медиана треугольника совпадает с его высотой, то треугольник

Биссектриса параллелограммаСкачать

Биссектриса параллелограмма

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Параллелограмм. Свойства. Периметр.Скачать

Параллелограмм. Свойства. Периметр.

№954. Медиана, проведенная к основанию равнобедренного треугольника, равна 160 см, а основаниеСкачать

№954. Медиана, проведенная к основанию равнобедренного треугольника, равна 160 см, а основание

ПОСТРОЕНИЕ БИССЕКТРИСЫ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ПОСТРОЕНИЕ БИССЕКТРИСЫ 😉 #егэ #математика #профильныйегэ #shorts #огэ

КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | МатематикаСкачать

КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | Математика

Четырёхугольники №17 из ОГЭ. Биссектриса и прямоугольные треугольники в четырёхугольниках.Скачать

Четырёхугольники №17 из ОГЭ. Биссектриса и прямоугольные треугольники в четырёхугольниках.
Поделиться или сохранить к себе: