- Формулировка теоремы косинусов
- Теорема Пифагора
- Формулировка теоремы косинусов для треугольника
- Классическое доказательство теоремы косинусов.
- Формулировка и формула теоремы
- Теорема косинусов для остроугольного треугольника.
- Доказательство теоремы косинусов для треугольника
- Теорема косинусов
- Примеры задач
- Теорема косинусов для прямоугольного треугольника
- Теорема косинусов и синусов
- Формулировка и доказательство теоремы косинусов
- Формулировка теоремы для каждой из сторон треугольника
- Косинусы углов треугольника
- Определение угла с помощью косинуса
- Рассмотрение пределов изменения cos α и sin α
- Примеры решения задач
- Теорема косинусов. Доказательство теоремы косинусов.
- Следствие из теоремы косинусов.
- 📺 Видео
Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать
Формулировка теоремы косинусов
Для плоского треугольника со сторонами a,b,c и углом α, противолежащим стороне a, справедливо соотношение:
Квадрат одной стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного их произведения, умноженного на косинус угла между ними |
Полезные формулы теоремы косинусов:
Как видно из указанного выше, с помощью теоремы косинусов можно найти не только сторону треугольника по двум сторонам и углу между ними, можно, зная размеры всех сторон треугольника, определить косинусы всех углов, а также вычислить величину любого угла треугольника. Вычисление любого угла треугольника по его сторонам является следствием преобразования формулы теоремы косинусов.
Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать
Теорема Пифагора
Теорема Пифагора . В прямоугольном треугольнике сумма квадратов длин катетов равна квадрату длины гипотенузы .
Доказательство . Докажем, что длины сторон произвольного прямоугольного треугольника ABC (рис.1)
С этой целью рассмотрим квадрат квадрат со стороной, равной c , изображённый на рисунке 2.
Площадь этого квадрата равна сумме площадей четырёх одинаковых прямоугольных треугольников, равных треугольнику ABC (рис.3, рис.4), и площади квадрата со стороной, равной a – b (рис.5).
Рис.3 |
Рис.4 |
Рис.5 |
Поэтому справедливо равенство
что и требовалось доказать.
Видео:ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать
Формулировка теоремы косинусов для треугольника
Теорема косинусов для треугольника связывает две стороны треугольника и угол между ними со стороной, лежащей против этого угла. К примеру, обозначим буквами , , и длины сторон треугольника ABC, лежащие соответственно против углов A, B и C.
Тогда имеет теорема косинусов для этого треугольника может быть записана в виде:
На рисунке для удобства дальнейших рассуждений угол С обозначен углом . Словами это можно сформулировать следующим образом: «Квадрат любой стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного произведения этих сторон на косинус угла между ними.»
Понятно, что если бы вы выражали другую сторону треугольника, например, сторону , то в формуле нужно было бы брать косинус угла A, то есть лежащего против искомой стороны в треугольнике, а справа в уравнении на своих местах стояли бы стороны , то в формуле нужно было бы брать косинус угла A, то есть лежащего против искомой стороны в треугольнике, а справа в уравнении на своих местах стояли бы стороны и . Выражение для квадрата стороны . Выражение для квадрата стороны получается аналогично:
Видео:Синус, косинус и тангенс острого угла в прямоугольном треугольникеСкачать
Классическое доказательство теоремы косинусов.
Пусть есть треугольник ABC. Из вершины C на сторону AB опустили высоту CD. Значит:
Записываем теорему Пифагора для 2-х прямоугольных треугольников ADC и BDC:
h 2 = b 2 – (b cos α) 2 (1)
h 2 = a 2 – (c – b cos α) 2 (2)
Приравниваем правые части уравнений (1) и (2):
b 2 – (b cos α) 2 = a 2 – (c – b cos α) 2
a 2 = b 2 + c 2 – 2bc cos α.
Если 1-н из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.
Определить стороны b и c:
b 2 = a 2 + c 2 – 2ac cos β
c 2 = a 2 + b 2 – 2ab cos γ.
Видео:ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого углаСкачать
Формулировка и формула теоремы
В плоском треугольнике квадрат стороны равняется сумме квадратов двух других сторон минус удвоенное произведение данных сторон, умноженное на косинус угла между ними.
a 2 = b 2 + c 2 – 2bc cos α
Видео:Нахождение косинуса и синуса угла в прямоугольном треугольникеСкачать
Теорема косинусов для остроугольного треугольника.
Если угол острый, то справедлива формула:
a 2 = b 2 + c 2 −2bx
Видео:Что такое синус, косинус и тангенс угла в прямоугольном треугольнике. Часть 1Скачать
Доказательство теоремы косинусов для треугольника
Доказательство теоремы косинусов для треугольника проводят обычно следующим образом. Разбивают исходный треугольник на два прямоугольных треугольника высотой, а дальше играются со сторонами полученных треугольников и теоремой Пифагора. В результате после долгих нудных преобразований получаю нужный результат. Мне лично этот подход не по душе. И не только из-за громоздких вычислений, но ещё и потому что в этом случае приходится отдельно рассматривать случай, когда треугольник является тупоугольным. Слишком много трудностей.
Я предлагаю доказать эту теорему с помощью понятия «скалярного произведения векторов». Я сознательно иду на этот риск для себя, зная, что многие школьники предпочитают обходить эту тему стороной, считая, что она какая-то мутная и с ней лучше не иметь дела. Но нежелание возиться отдельно с тупоугольным треугольником во мне всё же пересиливает. Тем более, что доказательство в результате получается удивительно простым и запоминающимся. Сейчас вы в этом убедитесь.
Заменим стороны нашего треугольника следующими векторами:
Согласно правилам сложения векторов имеем: . Действительно, по правилу треугольника вектор, равный сумме двух векторов, отложенных последовательно один за другим, — это вектор с началом в начале первого вектора и концом в конце второго. Переносим . Действительно, по правилу треугольника вектор, равный сумме двух векторов, отложенных последовательно один за другим, — это вектор с началом в начале первого вектора и концом в конце второго. Переносим в правую часть равенства с противоположным знаком, в результате чего получаем следующее векторное выражение: .
Теперь возьмём скалярный квадрат обеих частей полученного выражения. В результате чего получим:
Я напоминаю, что по определению скалярное произведение векторов равно произведению длин этих векторов на косинус угла между ними. Из этого определения также следует, что скалярный квадрат вектора равен квадрату его длины. Действительно, ведь угол между вектором и им же самим равен нулю, то есть соответствующих косинус равен 1. То есть остаётся только квадрат длины вектора. Исходя из этого мы сразу получаем выражение для теоремы косинусов:
Что и требовалось доказать. Причём данное доказательство хорошо ещё тем, что позволяет лучше запомнить саму формулу. Ведь теперь становится понятным, откуда берётся этот хвост . Как раз из скалярного произведения. Ну и, как я уже говорил, это доказательство справедливо для любых треугольников: остроугольных, тупоугольных и прямоугольных. То есть угол . Как раз из скалярного произведения. Ну и, как я уже говорил, это доказательство справедливо для любых треугольников: остроугольных, тупоугольных и прямоугольных. То есть угол может быть острым, тупым или прямым. И не требуется рассматривать доказательство для каждого из этих случаев, что не может не радовать.
Кстати, в случае, когда угол прямой, мы получаем прямой, мы получаем , и выражение принимает следующий вид: . Что мы получили? Правильно! Это запись теоремы Пифагора. Квадрат гипотенузы равен сумме квадратов катетов. Так что ниточки постепенно сплетаются. То есть, как обычно говорят, теорема косинусов для треугольника есть обобщение теоремы Пифагора на случай произвольного треугольника, не обязательно прямоугольного.
Видео:8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольникаСкачать
Теорема косинусов
Теорема косинусов . Квадрат длины стороны треугольника равен сумме квадратов длин других сторон минус удвоенное произведение длин этих сторон на косинус угла между ними.
Доказательство . Рассмотрим сначала треугольник ABC , у которого углы A и С – острые (рис.6).
Докажем, что длины сторон этого треугольника удовлетворяют равенству
a 2 = b 2 + c 2 – – 2bc cos A | (1) |
С этой целью проведём высоту BD из вершины B (рис.7).
В соответствии с определениями синуса и косинуса угла прямоугольного треугольника справедливы равенства
BD = c sin A, AD = c cos A, DC = b – AD = b – c cos A.
Из теоремы Пифагора , применённой к прямоугольному треугольнику BDC , получим
Таким образом, в случае треугольника ABC с острыми углами A и С теорема косинусов доказана.
Замечание 1 . Для того, чтобы получить полное доказательство теоремы косинусов, необходимо рассмотреть также и следующие случаи:
- Угол A – острый, угол C – тупой (рис.8)
Угол A – прямой (рис. 9).
Угол A – тупой (рис.10).
Во всех перечисленных случаях доказательства теоремы косинусов проводятся совершенно аналогично тому, как это было сделано для случая острых углов A и C , и мы рекомендуем читателю провести эти доказательства в качестве полезного и несложного упражнения.
Замечание 2 . В случае, когда угол A является прямым углом, формула (1) принимает вид
откуда вытекает, что теорема Пифагора является частным случаем теоремы косинусов.
Замечание 3 . Если у треугольника известны длины всех сторон, то с помощью теоремы косинусов можно найти косинус любого угла треугольника, например,
Видео:Задача 6 №27346 ЕГЭ по математике. Урок 39Скачать
Примеры задач
Задание 1
В треугольнике известны длины двух сторон – 5 и 9 см, а также, угол между ними – 60°. Найдите длину третьей стороны.
Решение:
Применим формулу теоремы, приняв известные стороны за b и c, а неизвестную за a:
a 2 = 5 2 + 9 2 – 2 * 5 * 9 * cos 60° = 25 + 81 – 45 = 61 см 2 . Следовательно, сторона a = √ 61 см ≈ 7,81 см.
Задание 2
Самая большая сторона треугольника равна 26 см, а две другие – 16 и 18 см. Найдите угол между меньшими сторонами.
Решение:
Примем бОльшую сторону за a. Чтобы найти угол между сторонами b и c, воспользуемся следствием из теоремы:
Следовательно, угол α = arccos (-1/6) ≈ 99,59°.
Видео:Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать
Теорема косинусов для прямоугольного треугольника
Теорема косинусов для прямоугольного треугольника.
Рассмотрим прямоугольный треугольник ABC:
По теореме косинусов сторона «а» равна:
но угол А прямой, косинус прямого угла равен нулю, отсюда получаем:
Таким образом мы получили формулу теоремы Пифагора:
Видео:Косинус угла в прямоугольном треугольникеСкачать
Теорема косинусов и синусов
О чем эта статья:
Видео:Урок СИНУС, КОСИНУС И ТАНГЕНС ОСТРОГО УГЛА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКАСкачать
Формулировка и доказательство теоремы косинусов
Для начала вспомним теорему Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Формула Теоремы Пифагора:
a 2 > + b 2 > = c 2 >, где a, b — катеты, с — гипотенуза.
В доказательстве теоремы косинусов используем формулу длины отрезка в координатах. Рассмотрим данную формулу:
В доказательстве теоремы косинусов BC — это сторона треугольника АВС, которая обозначена буквой а. Введем удобную систему координат и найдем координаты нужных нам точек. У точки В координаты (с; 0).
Координаты точки С — (b cos α; b sin α) при α ∈ (0° ; 180°).
BC 2 = a 2 = (b cos α — c) 2 + b 2 sin 2 α = b 2 cos 2 α + b 2 sin 2 α — 2bc cos α + c 2 = b 2 (cos 2 α + sin 2 α) — 2bc cos α + c 2
cos 2 α + sin 2 α = 1 — основное тригонометрическое тождество.
Что и требовалось доказать.
Совет: чтобы быстрее разобраться в сложной теме, запишитесь на онлайн-курсы по математике для детей и подростков.
С помощью теоремы косинусов можно найти косинус угла треугольника:
- Когда b 2 + c 2 — a 2 > 0, угол α будет острым.
- Когда b 2 + c 2 — a 2 = 0, угол α будет прямым.
- Когда b 2 + c 2 — a 2
Сформулируем еще одно доказательство теоремы косинусов.
Пусть нам дан треугольник ABC, в котором из вершины C на сторону AB опустили высоту CD. Это значит:
- AD = b × cos α,
- DB = c – b × cos α.
Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:
- h 2 = b 2 — (b × cos α) 2
- h 2 = a 2 — (c – b × cos α) 2
Приравниваем правые части уравнений:
- b 2 — (b × cos α) 2 = a 2 — (c — b × cos α) 2
- a 2 = b 2 + c 2 — 2bc × cos α
Если один из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.
Определим стороны b и c:
- b 2 = a 2 + c 2 — 2ac × cos β;
- c 2 = a 2 + b 2 — 2ab × cos γ.
Видео:Геометрия 8. Урок 11- Синус, Косинус, Тангенс и Котангенс угла в прямоугольном треугольнике.Скачать
Формулировка теоремы для каждой из сторон треугольника
Теорема косинусов справедлива для всех сторон треугольника, то есть:
a 2 = b 2 + c 2 — 2bc cos α
b 2 = c 2 + a 2 — 2ca cos β
c 2 = a 2 + b 2 — 2ab cos γ
Теорема косинусов может быть использована для любого вида треугольника.
Видео:ОГЭ как найти тангенс угла, если нет треугольника #математика #огэ #огэматематика #геометрияСкачать
Косинусы углов треугольника
Теорема косинусов позволяет найти как косинус, так и угол треугольника. Найдём косинусы углов:
Видео:Нахождение стороны прямоугольного треугольникаСкачать
Определение угла с помощью косинуса
А теперь обратим внимание на углы.
Как мы уже знаем, косинус угла из промежутка (0°; 180°) определяет угол (в отличие от его синуса).
Пусть нам дана единичная полуокружность. Если нам задан cos α, то нам задана точка на верхней полуокружности и задан угол α. Следовательно, cos α однозначно определяет точку М(cos α; sin α), и однозначно определяется угол ∠AOM.
Видео:Синус, косинус, тангенс и котангенс в прямоугольном треугольнике.Скачать
Рассмотрение пределов изменения cos α и sin α
Рассмотрим пределы изменения синуса и косинуса α. Вспомним, что если α — угол треугольника, то он лежит в пределах от 0° до 180°.
Предел изменения косинуса: -1 0, то α ∈ (0°;90°)
Если cos α
Видео:Тригонометрия за 50 секундСкачать
Примеры решения задач
При помощи теоремы косинусов можно решать задачки по геометрии. Рассмотрим интересные случаи.
Пример 1. Дан треугольник АВС. Найти длину СМ.
∠C = 90°, АВ = 9, ВС = 3, AM/MB = 1/2, где М — точка на гипотенузе АВ.
- Так как АМ + МВ = 9, а AM/MB = 1/2, то АМ = 3, МВ = 6.
Из треугольника АВС найдем cos B:
Из треугольника СМВ по теореме косинусов найдём СМ:
Пример 2. Дан треугольник АВС, в котором a2+ b22 + b 2 2 , то cos C 2 = a 2 + b 2 , то ∠C = 90°.
Видео:В остроугольном треугольнике ABC высота AH равна 9√69 ... | ОГЭ 2017 | ЗАДАНИЕ 9 | ШКОЛА ПИФАГОРАСкачать
Теорема косинусов. Доказательство теоремы косинусов.
Теорема косинусов — теорема евклидовой геометрии, которая обобщающает теорему Пифагора.
Теорема косинусов:
Для плоского треугольника, у которого стороны a, b, c и угол α, который противолежит стороне a, справедливо соотношение:
Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
Видео:Нахожденине косинуса и синуса угла в прямоугольном треугольникеСкачать
Следствие из теоремы косинусов.
- Теорема косинусов используется для определения cos угла треугольника:
h 2 = a 2 — (c – b cos α) 2 (2)
Приравниваем правые части уравнений (1) и (2):
b 2 — (b cos α) 2 = a 2 — (c — b cos α) 2
a 2 = b 2 + c 2 — 2bc cos α.
Если 1-н из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.
Определить стороны b и c:
📺 Видео
Синус, косинус, тангенс, котангенс острого угла в прямоугольном треугольнике.Скачать