Средняя оценка: 4.5
Всего получено оценок: 251.
Средняя оценка: 4.5
Всего получено оценок: 251.
В школьном курсе геометрии изучают разные виды треугольников. В задачах очень часто рассматривают остроугольный треугольник, поэтому стоит особенно пристально изучить свойства этой фигуры.
- Определение понятия
- Характеристики
- Линии остроугольного треугольника
- Свойства
- Что мы узнали?
- Остроугольный треугольник — виды, свойства и признаки
- Виды, признаки и свойства остроугольных треугольников
- Равносторонний треугольник
- Разносторонний треугольник
- Равнобедренный остроугольный треугольник
- Равнобедренный тупоугольный треугольник
- Остроугольный, прямоугольный и тупоугольный треугольники.
- Виды треугольников
- Как определить вид треугольника
- Градусные меры острого, тупого, прямого углов в треугольниках
- 📸 Видео
Видео:№1031. Выясните, является ли треугольник остроугольным, прямоугольным или тупоугольнымСкачать
Определение понятия
Треугольником называют фигуру, состоящую из трех точек, и трех отрезков их соединяющих. В зависимости от углов треугольник может быть:
- Прямоугольным, если один из углов равен 90 градусов;
- Тупоугольный, если один из углов тупой, т.е. больше 90 градусов;
- Остроугольным, если все углы треугольника острые.
Для решения задач с остроугольными треугольниками часто приходится использовать теорему синусов или косинусов.
Еще в Древней Греции математики изучали треугольники. Именно греки разработали основы современной геометрии, куда входит и множество теорем о треугольниках. Например, автор теоремы Пифагора родом из Древней Греции.
Видео:7 класс, 32 урок, Остроугольный, прямоугольный и тупоугольный треугольникиСкачать
Характеристики
В остроугольном треугольнике каждый угол меньше 90 градусов. Но сумма углов в треугольнике всегда равна 180. В любой фигуре вершины обозначают заглавными латинскими буквами.
Одним из элементов треугольника, вместе со сторонами и углами, является внешний угол. Внешний угол это угол, смежный с внутренним углом треугольника.
У любого треугольника 6 внешних углов, по 2 на каждый внутренний. Любой внешний угол остроугольного треугольника всегда будет тупым.
Видео:Геометрия Установите, остроугольным, прямоугольным или тупоугольным является треугольник стороныСкачать
Линии остроугольного треугольника
Остроугольный треугольник обладает рядом свойств.
Медиана геометрической фигуры будет делить сторону, на которую она опущена, пополам. Причем можно провести этот отрезок с любой вершины. Медианы пересекаются в одной точке, и эта точка делит каждую из них в отношении 2:1.
Рис. 1. Медианы в остроугольном треугольнике
Известно, что если провести три высоты в остроугольном треугольнике, то они будут пересекаться в одной точке, которую называют ортоцентром. Эти отрезки опускают под прямым углом к противоположным сторонам. Высоты в остроугольном треугольнике разделяют эту фигуру на прямоугольные треугольники.
Рис. 2. Высоты в остроугольном треугольнике
Биссектрисы в остроугольном треугольнике не только делят углы пополам. Эти отрезки пересекаются в точке, которая является центром вписанной окружности.
Также биссектриса разделяет сторону остроугольного треугольника на две части, которые пропорциональны соответствующим боковым сторонам. Данное утверждение нужно запомнить, чтобы решать некоторые задачи.
Рис. 3. Биссектрисы в остроугольном треугольнике
Видео:Виды треугольниковСкачать
Свойства
Если суммировать числовые значения любых двух сторон остроугольного треугольника, то обязательно получим цифру, которая будет больше третьего отрезка данной геометрической фигуры.
Средняя линия в остроугольном треугольнике параллельна одной из сторон данной фигуры и равна ее половине.
Видео:Треугольники: остро-, тупо- и прямоугольныеСкачать
Что мы узнали?
В остроугольном треугольнике каждый угол меньше 90 градусов. Общая сумма углов здесь также равняется 180 градусов. Нельзя забывать о характерных линиях треугольника. Поскольку с их помощью легко вычислить стороны данной треугольной фигуры или центр определенной окружности. А если в условиях задач по геометрии указаны углы, то можно воспользоваться тригонометрическими функциями.
Видео:Остроугольный , тупоугольный и прямоугольный треугольники | Геометрия 7-9 класс #32 | ИнфоурокСкачать
Остроугольный треугольник — виды, свойства и признаки
Одна из центральных тем на уроках геометрии – остроугольный треугольник, составная часть своих более сложных аналогов и иных тригонометрических форм.
Азы изучения точной науки начинаются с рассмотрения уникальной комбинации из трех сторон и острых углов.
Видео:Всякий равносторонний треугольник является остроугольным. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Виды, признаки и свойства остроугольных треугольников
Трехсторонние фигуры разделяются на множество подвидов и категорий.
Общая классификация по наибольшему углу делит их на 3 группы:
Они располагают как общими для формы с тремя сторонами характеристиками, так и специфическими признаками.
3 угла, сумма которых равна 180°, (величина каждого меньше 90°) и 3 стороны;
сумма длин любых двух сторон больше оставшейся третьей.
Свойства остроугольной фигуры определяются вспомогательными геометрическими линиями, всегда находящимися внутри него:
1. Биссектрисы, делящие углы пополам, являются центром, вокруг которого можно нарисовать вписанную окружность.
2. Высоты пересекаются в одной точке, образуя ортоцентр.
3. Медианы в точке пересечения пролегают в пропорции 2:1 (2 трети до центра и 1 треть после).
Уникальные особенности зависят от разновидностей фигуры.
Видео:Остроугольный треугольникСкачать
Равносторонний треугольник
«Идеальный» правильный треугольник, облегчающий решение задач. Определение, форма и свойства данной геометрической формы исходят из названия — все углы равны 60°, а стороны равны друг другу.
Полное равенство придает и другую особенность: медианы, биссектрисы и высоты полностью совпадают.
Видео:Высота, биссектриса, медиана. 7 класс.Скачать
Разносторонний треугольник
Наиболее часто встречаемый на чертежах в геометрии вариант, один из самых трудноразрешимых видов. Разносторонними бывают и прямоугольные, и тупоугольные фигуры.
Уникальных отличий не имеет, только общие:
все параметры имеют разные значения;
совпадений между вспомогательными линиями нет.
Видео:Всякий равносторонний треугольник является равнобедренным. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Равнобедренный остроугольный треугольник
Здесь при основании (стороне, не равной остальным) находятся равные друг другу 2 стороны и 2 угла. Выглядит как вытянутый в одну сторону равносторонний треугольник.
проведенная к основанию линия – и биссектриса, и высота, и медиана;
вспомогательные линии из крайних точек при основании совпадают.
Видео:Всякий равнобедренный треугольник является остроугольным. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Равнобедренный тупоугольный треугольник
Пусть он и называется равнобедренным, но из-за наличия угла более 90° не является остроугольным и является представителем другой группы.
Начертить его сложнее (рисунок следует начинать с основания и 2 острых углов и уже после создавать тупой), но процесс решения и изучения прост.
Отличие у него одно – точка пересечения двух высот, проведенных от углов при основании, выходит за периметр треугольника. Чтобы ее обозначить, необходимо нарисовать «продолжения» равнобедренных линий. Все остальные свойства совпадают.
В ключевых и фундаментальных разделах математики именно треугольник является основой для доказательства многих теорем и помощью в решении множества задач. Твердое знание его свойств откроет путь к успехам в расчетах, вычислениях, оформлении чертежей и фото в проектных работах.
Видео:Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать
Остроугольный, прямоугольный и тупоугольный треугольники.
Виды треугольников
Остроугольный треугольник — это треугольник,
в котором все углы острые.
Прямоугольный треугольник — это треугольник,
в котором один из углов прямой.
Тупоугольный треугольник — это треугольник,
в котором один из углов тупой.
Как определить вид треугольника
Для того, чтобы понять какой треугольник — остроугольный, прямоугольный или тупоугольный
нужно знать какая градусная мера у углов в треугольнике.
Если один из углов в треугольнике прямой, значит треугольник прямоугольный. Все углы острые в треугольнике — значит треугольник остроугольный. Если в треугольнике один из углов тупой, значит треугольник тупоугольный.
В произвольном треугольнике все углы острые, или два угла острые, а третий прямой или тупой. Если в треугольнике вам известно, что один углов тупой или прямой, значит сумма двух других углов не больше 90 градусов.
В прямоугольном треугольнике стороны напротив острых углов называются катетами, а сторона напротив прямого угла называется гипотенузой.
Градусные меры острого, тупого, прямого углов в треугольниках
Чтобы понять как называется угол и как называется треугольник с этими углами — надо знать его градусную меру:
- Острый угол в любом из треугольников не больше 90 градусов.
- Прямой угол в любом из треугольников равен 90 градусам.
- Тупой угол в любом из треугольников больше 90 градусов, но меньше 180 градусов.
📸 Видео
32. Остроугольный, прямоугольный и тупоугольный треугольникиСкачать
Геометрия Стороны треугольника равны 7 см 8 см и 12 см Верно ли что данный треугольник остроугольныйСкачать
№498. Выясните, является ли треугольник прямоугольным, если его стороны выражаются числамиСкачать
Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать
Площадь треугольника. Как найти площадь треугольника?Скачать
Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать
Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.Скачать
7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать