Какой треугольник является правильным

Что такое правильный треугольник

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Определение правильного треугольника

Треугольник называется правильным, если все его стороны равны: $AB + AC + BC$ (рис. 1). Правильный треугольник еще называется равносторонним.

Какой треугольник является правильным

Видео:Геометрия - Построение правильного треугольникаСкачать

Геометрия - Построение правильного треугольника

Свойства правильных треугольников

  1. В правильном треугольнике все углы равны между собой и равны $60^$.
  2. Высота в равностороннем треугольнике совпадает с медианой и биссектрисой.
  3. Центры пересечения медиан, биссектрис и высот совпадают.
  4. Центры вписанной и описанной окружностей совпадают.

Радиусы $r$ и $R$, вписанной и описанной окружностей равностороннего треугольника, связаны с длиной его стороны $a$ следующими соотношениями:

Видео:Виды треугольниковСкачать

Виды треугольников

Примеры решения задач

Задание. Найти, чему равна высота равностороннего треугольника со стороною $a = 4$ см.

Решение. Сделаем рисунок (рис. 2).

Какой треугольник является правильным

Высота в равностороннем треугольнике является так же и медианой, поэтому:

$A H=H C=frac A C=2$

Далее, рассмотрим $Delta B H C$, этот треугольник прямоугольный. По теореме Пифагора:

Ответ. $B H=2 sqrt$ см

Какой треугольник является правильным

Задание. Найти сторону равностороннего треугольника, если его высота равна $3 sqrt$ дм.

Решение. Сделаем рисунок (рис. 2).

Какой треугольник является правильным

Рассмотрим $Delta B C H$, он прямоугольный. Обозначим $BC = a$, тогда $H C=frac$ . Запишем теорему Пифагора для рассматриваемого треугольника:

Используя введенные обозначения и исходные данные, получим

Решим полученное уравнение относительно $a$:

Ответ. $a = 6$ дм.

Задание. Дан равносторонний треугольник $ABC$, со стороной $a=6 sqrt$ см. Найти радиусы вписанной и описанной окружностей.

Решение. Сделаем рисунок (рис. 3).

Какой треугольник является правильным

Радиус $r$ вписанной и радиус $R$ описанной окружностей равностороннего треугольника связаны с его длиной $a$ следующими соотношениями:

Подставляя значение $a=6 sqrt$, получим:

cm>) quad, quad R=frac <sqrtcdot 6 sqrt>=6$ (см)

Ответ. $r = 3$ см , $R = 6$ см

Видео:Построение равностронего треугольника.Скачать

Построение равностронего треугольника.

Свойства равностороннего треугольника: теория и пример задачи

В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.

Видео:9 класс. Геометрия. Правильные многоугольники и их свойства. Правильный треугольник. Урок #4Скачать

9 класс. Геометрия. Правильные многоугольники и их свойства. Правильный треугольник. Урок #4

Определение равностороннего треугольника

Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.

Какой треугольник является правильным

Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.

Видео:Геометрия Равносторонний треугольникСкачать

Геометрия  Равносторонний треугольник

Свойства равностороннего треугольника

Свойство 1

В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.

Какой треугольник является правильным

Свойство 2

В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.

Какой треугольник является правильным

CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.

Свойство 3

В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.

Какой треугольник является правильным

Свойство 4

Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.

Какой треугольник является правильным

Свойство 5

Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.

Какой треугольник является правильным

  • R – радиус описанной окружности;
  • r – радиус вписанной окружности;
  • R = 2r.

Свойство 6

В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:

1. Высоту/медиану/биссектрису:
Какой треугольник является правильным

2. Радиус вписанной окружности:
Какой треугольник является правильным

3. Радиус описанной окружности:
Какой треугольник является правильным

4. Периметр:
Какой треугольник является правильным

5. Площадь:
Какой треугольник является правильным

Видео:Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)

Пример задачи

Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.

Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:

Видео:Формулы равностороннего треугольника #shortsСкачать

Формулы равностороннего треугольника #shorts

Правильный треугольник — свойства, признаки и формулы

Какой треугольник является правильным

Видео:Правильный многоугольник | Геометрия 7-9 класс #104 | ИнфоурокСкачать

Правильный многоугольник | Геометрия 7-9 класс #104 | Инфоурок

Общие сведения

Любое пространство можно описать размерностью. В трёхмерном измерении плоская геометрическая фигура, состоящая из трёх отрезков и такого же количества точек, в которых они соединяются, называется треугольником. Отрезки называют сторонами или боковыми гранями, площадь, ограниченная ими — внутренней, а точки — вершинами. Фигура имеет 3 угла и является невырожденной.

Какой треугольник является правильным

Строгого требования к обозначениям элементов многоугольника нет. Но традиционно вершины подписывают заглавными буквами латинского алфавита A, B, C, а противолежащие им стороны — аналогичными строчными знаками. В качестве обозначений для углов используют греческие символы: α, β, γ. Например, если имеется треугольник ABC, у него будут углы A, B, C и стороны a, b, c. Боковые грани могут подписываться и как отрезки, тогда в их имени учитываются ограничивающие точки. Например, AB, BC, CA.

В зависимости от соотношения размеров сторон, все треугольники разделяют на 3 вида. Они бывают:

Какой треугольник является правильным

  1. Равнобедренными — многоугольники, у которых одна сторона не равна двум другим. Эта грань называется основанием. Углы при этой стороне равны.
  2. Разносторонние (неправильные) — длины всех граней разные.
  3. Равносторонние — треугольники, имеющие одинаковые стороны. Часто эти фигуры называют правильными. По сути, они являются частным случаем равнобедренного многоугольника.

Существуют правила, позволяющие утверждать о равенстве или подобии двух и более треугольников. Они считаются идентичными, то есть их параметры полностью совпадают, если 2 стороны и угол равны или все грани имеют одинаковую длину. А также фигуры будут одинаковыми, когда у них совпадают 2 стороны и угол, располагающийся напротив большего отрезка.

Признаки подобия помогают определить вид треугольника при сравнении с известным. Если 2 любых угла равны в обеих фигурах, они считаются похожими. Когда же 2 стороны многоугольника пропорциональны двум отрезкам другого, причём углы, заключённые между этими гранями, равны, такие фигуры подобны.

Видео:Равнобедренный треугольник. 7 класс.Скачать

Равнобедренный треугольник. 7 класс.

Особые линии и точки

Медиана, высота и биссектриса — 3 замечательные линии любого треугольника. Представляют они собой внутренние отрезки, построенные из углов на противоположные стороны. Линия, соединяющая вершину с серединой противоположной грани, называется медианой. Луч, разделяющий угол на 2 равные части — это биссектриса, а перпендикуляр, построенный к стороне — высота.

Какой треугольник является правильным

В любом правильном треугольнике можно начертить 3 отрезка. Если отложить медиану, а потом биссектрису и высоту, можно заметить, что эти линии совпадут. Эта особенность и есть замечательным свойством равностороннего многоугольника, то есть если в любой другой трёхугольной фигуре можно построить 12 особых линий, то в рассматриваемом только 3.

Доказать это утверждение можно следующим образом: пусть имеется треугольник АВС, в котором проведена высота ВH. Далее, рассуждения нужно построить так:

Какой треугольник является правильным

  1. Отрезок BH перпендикулярен прямой AC по построению.
  2. Точка H разделяет отрезок AC на AD и CD. Если это утверждение будет верным, это означает, что построенная высота BH будет медианой треугольника.
  3. Отрезок BH создаёт в многоугольнике 2 угла — ∠ABH и ∠CBH. При верности этого утверждения можно утверждать, что отрезок BH является биссектрисой.

Если создать зеркальное отражение треугольнику и совместить его с оригинальным, все углы попарно совместятся. Совпадут и стороны. Так как ВH — высота, она перпендикуляр. Значит, в точке H отрезок образует прямой угол с боковой гранью AC. Отсюда следует, что образованные треугольники AHB и CBH прямоугольные.

Они являются равными по общей гипотенузе и острому углу. Это следует из того, что правильный многоугольник — частный случай равнобедренного. Так как треугольники совпадают, у них одинаковые углы ABH и CBH. Причём они смежные, поэтому BH — биссектриса. В то же время точка H делит AC на 2 равных отрезка, значит, BH — медиана.

Точка, в которой пересекаются отрезки, будет центром тяжести фигуры. Её особенность в том, что она разделяет эту линию на 2 части в отношении 2 к 1, если считать от угла. Кроме этого, из-за равенства медианы и биссектрисы эта точка будет и ортоцентром.

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Основные формулы

Для каждого треугольника существует набор формул, с помощью которых можно определить его элементы. Чаще всего приходится выяснять длины сторон, площадь, высоты и периметр. При этом если известны боковые грани, можно найти практически любые остальные параметры.

Какой треугольник является правильным

Вокруг правильной фигуры можно описать круг, причём окружность можно и вписать в середину. Что интересно, их центры совпадут между собой и с местом пересечения высот. В этом случае радиус внешнего круга равняется R = (a * √‎3) / 3 = a / 2 * sin (a), а внутреннего: r = (a * √‎3) / 6 = R / 2. Чтобы найти высоту, зная радиус, используют выражение: h = (3 *R) / 2. Кроме этой формулы, довольно часто применяют равенство, связывающее сторону и перпендикуляр: h = (a * √‎3) / 2.

Доказательство верности формулы для нахождения радиуса вписанной окружности можно построить исходя из выражения, справедливого к равнобедренной фигуре: r = b / 2 √(‎(2 a — b) / (2 a + b)). Так как стороны равны, то a = b. Получается, что r = a / 2 √‎(2a — a) / (2a + a) = (a / 2) * √‎(1 / 3) = a / (2 * √‎3) = (a √‎3) / 6.

Чтобы определить длину стороны, нужно знать высоту и теорему Пифагора. Согласно ей, квадрат гипотенузы находится как сумма квадратов высоты и длины разделённого основания. Применяя теорему к правильной фигуре, можно записать: AB 2 = h 2 + (AB / 2) 2 . Это равенство решают следующим образом: AB 2 = h 2 + AB 2 / 2 2 . Выражение можно преобразовать в вид: (3a 2 / 4) = h 2 → a 2 = (4 * h 2 ) / 3 → a 2 = √‎((4 * h 2 ) / 3) → a = (2 * h) / √3.

Из других существующих формул можно перечислить те, что чаще всего применяют при решении примеров:

Какой треугольник является правильным

  1. Площадь. Находят из выражения: S = (a 2 * √3) / 4. Вывести эту формулу довольно просто. Если взять за основу, что равенство для площади верно, то исходя из свойств фигуры можно записать: S = ½ * a 2 * sin 60 = ½ * a 2 * √3 / 2 = (√3 / 4) * a 2 . Что и следовало доказать.
  2. Периметр. Чтобы его определить, нужно сложить длины всех сторон, но так как в правильной фигуре они равны, можно воспользоваться формулой: P = 3 * a.

Существуют ещё 2 значимые теоремы: косинусов и синусов. Согласно первой, квадрат стороны фигуры будет ранятся удвоенному произведению двух оставшихся отрезков и косинусу угла между ними, отнятому из суммы квадратов: a 2 = b 2 + c 2 — 2 * b * c * cos (a). Согласно же второй, длины отрезков пропорциональны синусам углов, лежащих напротив: a / sin (a) = b / sin (b) = c / sinс.

Видео:9 класс, 21 урок, Правильный многоугольникСкачать

9 класс, 21 урок, Правильный многоугольник

Решение задач

Чтобы уметь решать различные задания, связанные с треугольником, нужно помнить всего несколько формул. Но понадобится знать, что углы в фигуре равны друг другу и составляют 60 градусов. Часто придётся применять и теорему Пифагора. Вот некоторые из типовых заданий, используемые при обучении школьников в седьмом классе:

Какой треугольник является правильным

  1. Какой будет радиус вписанной в правильный треугольник окружности, если его высота равняется 9 см. Зная свойство фигуры, решить задачу можно за пару секунд. Так как радиус равен 1/3 высоты, ответом на задачу будет: r = h / 3 = 9 / 3 = 3 см.
  2. Сторона равностороннего треугольника равняется корню из трёх. Определить диаметр описанной окружности. Известно, что отношение синуса к противолежащему углу составляет 2R. Следовательно: R = a / 2 * sin (a) = √‎3 * 2 / 2 * √‎3 = 1.
  3. Вокруг треугольной фигуры со стороной 8 √‎3 описан круг. Узнать его радиус. Эта задача в 2 действия. Используя формулу для нахождения вписанного радиуса и определение r = R / 2 можно записать: R = 2 * a * √‎3 / 6 = 2 * 8 * √‎3 * √‎3 / 6 = 2 * 4 = 8.
  4. Пусть имеется квадрат, вокруг которого описана окружность. В ней так же располагается правильный треугольник. Периметр треугольной фигуры равен 9 √‎ 6. Нужно вычислить сумму всех сторон квадрата. На первом шаге необходимо определить длину боковой грани треугольника. Найти её можно по формуле: a = 3 √‎6. Теперь возможно рассчитать радиус описанной окружности: a = R * √‎3. Выполнив подстановку, найти ответ несложно: R = 3 √‎6 / √‎3 = 3 * √‎2. На третьем шаге можно выяснить, чему равняется сторона четырёхугольника. В этом поможет равенство: 3 √‎2 = (n √‎2) / 2. Отсюда n = 6. Значит, периметр квадрата равняется: P = 4 * 6 = 24.

Проверить правильность решения, возможно, используя онлайн-калькуляторы. Это сервисы, которые предлагают бесплатно вычислить элементы правильной фигуры. При этом от пользователя требуется лишь внести в специальную форму исходные данные и нажать кнопку «Рассчитать».

Следует отметить, что выучить наизусть все формулы сложно, поэтому обычно используют логическое мышление и теоремы синусов-косинусов. Учитывая, что любой угол в равностороннем треугольнике равен 60 градусов практически любую формулу вывести можно самостоятельно.

📽️ Видео

Как начертить треугольник | 4 способа | Выпуклый многоугольникСкачать

Как начертить треугольник | 4 способа | Выпуклый многоугольник

Многоугольники. Математика 8 класс | TutorOnlineСкачать

Многоугольники. Математика 8 класс | TutorOnline

7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2Скачать

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2

№227. Основание призмы — правильный треугольник ABC. Боковое ребро АА1 образует равныеСкачать

№227. Основание призмы — правильный треугольник ABC. Боковое ребро АА1 образует равные

Видеоурок по математике "Понятие правильного многогранника"Скачать

Видеоурок по математике "Понятие правильного многогранника"

9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать

9 класс, 22 урок, Окружность, описанная около правильного многоугольника

№204. Прямая ОМ перпендикулярна к плоскости правильного треугольника ABC и проходит через центр ОСкачать

№204. Прямая ОМ перпендикулярна к плоскости правильного треугольника ABC и проходит через центр О
Поделиться или сохранить к себе: