Как посчитать биссектрису прямоугольного треугольника

Все формулы биссектрисы прямоугольного треугольника

1. Найти по формулам длину биссектрисы из прямого угла на гипотенузу:

Как посчитать биссектрису прямоугольного треугольника

L — биссектриса, отрезок ME , исходящий из прямого угла (90 град)

a, b — катеты прямоугольного треугольника

с — гипотенуза

α — угол прилежащий к гипотенузе

Формула длины биссектрисы через катеты, ( L ):

Как посчитать биссектрису прямоугольного треугольника

Формула длины биссектрисы через гипотенузу и угол, ( L ):

Как посчитать биссектрису прямоугольного треугольника

2. Найти по формулам длину биссектрисы из острого угла на катет:

Как посчитать биссектрису прямоугольного треугольника

L — биссектриса, отрезок ME , исходящий из острого угла

a, b — катеты прямоугольного треугольника

с — гипотенуза

α , β — углы прилежащие к гипотенузе

Формулы длины биссектрисы через катет и угол, ( L ):

Как посчитать биссектрису прямоугольного треугольника

Как посчитать биссектрису прямоугольного треугольника

Формула длины биссектрисы через катет и гипотенузу, ( L ):

Видео:Теорема Пифагора для чайников)))Скачать

Теорема Пифагора для чайников)))

Свойства биссектрисы прямоугольного треугольника

В данной публикации мы рассмотрим основные свойства биссектрисы прямоугольного треугольника, проведенной из прямого и острого углов, а также разберем примеры решения задач по данной теме.

Примечание: напомним, что прямоугольным называется треугольник, в котором один из углов прямой (т.е. равен 90°), а два остальных – острые ( Содержание скрыть

Видео:Найдите биссектрису прямоугольного треугольника с катетами 3 и 5 ★ Как решать?Скачать

Найдите биссектрису прямоугольного треугольника с катетами 3 и 5 ★ Как решать?

Свойства биссектрисы прямоугольного треугольника

Свойство 1

Если в прямоугольном треугольнике известны катеты, то длину биссектрисы, проведенной из прямого угла к гипотенузе, можно вычислить по формуле:

Как посчитать биссектрису прямоугольного треугольника

Как посчитать биссектрису прямоугольного треугольника

Свойство 2

Длину биссектрисы в прямоугольном треугольнике, проведенную из острого угла к противолежащему катету, можно вычислить по формуле:

Как посчитать биссектрису прямоугольного треугольника

Как посчитать биссектрису прямоугольного треугольника

  • la – биссектриса к катету;
  • α – острый угол, из которого проведена биссектриса.

Также можно использовать другую формулу, если известны все три стороны треугольника:

Как посчитать биссектрису прямоугольного треугольника

Примечания:

  • Прямоугольный треугольник может быть равнобедренным, и в этом случае к нему, в т.ч., применимы свойства биссектрисы равнобедренного треугольника.
  • Общие свойства биссектрисы в любом треугольнике представлены в нашей публикации – “Определение и свойства биссектрисы угла треугольника”.

Видео:Высота прямоугольного треугольникаСкачать

Высота прямоугольного треугольника

Примеры задач

Задача 1
Найдите длину биссектрисы, которая проведена к гипотенузе прямоугольного треугольника, если известно, что его катеты равны 21 и 28 см.

Решение
Воспользуемся формулой, приведенной в Свойстве 1, подставив в нее известные значения:

Как посчитать биссектрису прямоугольного треугольника

Задача 2
Катеты прямоугольного треугольника равны 9 и 12 см. Вычислите длину биссектрисы, проведенной к катету с наименьшей длиной.

Решение
Пример катеты за “a” (9 см) и “b” (12 см).

Для начала найдем гипотенузу треугольника (c), воспользовавшись теоремой Пифагора, согласно которой квадрат гипотенузы равняется сумме квадратов катетов:
c 2 = a 2 + b 2 = 9 2 + 12 2 = 225.
Следовательно, c = 15 см.

Теперь мы можем применить формулу, рассмотренную в Свойстве 2 для нахождения длины биссектрисы:

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Биссектриса — свойства, признаки и формулы

Базовым понятием и одним из наиболее интересных и полезных объектов школьной математики является биссектриса. С её помощью доказываются многие положения планиметрии, упрощается решение задач.

Известные свойства позволяют рассматривать геометрические фигуры с разных точек зрения. Появляется вариативность при выборе пути доказательств.

Становится возможным использование инструмента алгебры, например, свойство пропорции, нахождение неизвестных величин, решение алгебраических уравнений при рассмотрении геометрических вопросов.

Видео:Определение длины гипотенузыСкачать

Определение длины гипотенузы

Что такое биссектриса в геометрии

Как посчитать биссектрису прямоугольного треугольника

Рассматривают луч, выходящий из вершины угла или его часть (отрезок), который делит угол пополам. Такой луч (или, соответственно, отрезок) называется биссектрисой.

Как посчитать биссектрису прямоугольного треугольника

Часто для треугольников определение немного сужают, говоря об отрезке, соединяющем вершину угла, делящем его пополам, с точкой на противолежащей стороне. При этом рассматривается внутренняя область фигуры.

В то же время, часто при решении задач используются прямые, делящие внешние углы на два равных.

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Биссектриса прямоугольного треугольника

Для прямоугольного треугольника одна из биссектрис образует равные углы, величины которых хорошо просчитываются (45 градусов).

Как посчитать биссектрису прямоугольного треугольника

Это помогает вычислять углы при решении задач, связанных с фигурами, которые можно представить в виде прямоугольных треугольников или прямоугольников.

Как посчитать биссектрису прямоугольного треугольника

В тупоугольном треугольнике биссектриса делит больший угол на равные части, величина которых меньше 90 0 .

Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Свойства биссектрисы треугольника

1. Каждая точка этой линии равноудалена от сторон угла. Часто эту характеристику выбирают в качестве определения, поскольку верно и обратное утверждение для любого произвольного треугольника. Это позволяет находить и радиус вписанной окружности.

2. Все внутренние отрезки, делящие углы пополам, пересекаются в одной точке, которая является центром окружности, вписанной в фигуру, т. е. точка пересечения находится на равных расстояниях от сторон.

Как посчитать биссектрису прямоугольного треугольника

Данное свойство позволяет решать целый класс разнообразных задач, выводить формулы для радиусов вписанных окружностей правильных многоугольников.

Благодаря этому утверждению, легко доказывается следующее правило:

Площадь описанного многоугольника равна:

где p – полупериметр, а r – радиус вписанной окружности.

Это позволяет находить решение не только планиметрических, но и стереометрических задач.

Важную роль играют внешние биссектрисы треугольника. Вместе с внутренними они образуют прямые углы;

3. Сумма величин двух прилежащих сторон, делённая на длину противолежащей стороны, задаёт отношение частей биссектрисы (считая от вершины), полученных точкой пересечения всех трёх соответствующих линий.

Некоторые виды геометрических фигур, в силу своих особенностей, порождают особые примечательные характеристики;

4. В равнобедренном треугольнике биссектриса, проведённая к основанию, одновременно является медианой и высотой. Две другие – равны между собой.

В этом случае основание параллельно внешней биссектрисе.

Обратное положение также имеет место. Если прямая проведена параллельно основанию равнобедренного треугольника через некоторую вершину, то внешняя биссектриса при этой вершине является частью этой линии;

5. Для равностороннего многоугольника важной характеристикой считается равенство всех биссектрис;

6. У правильного треугольника все внешние биссектрисы параллельны сторонам;

7. Выделяют несколько особенностей, среди которых есть следующая теорема:

«Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам».

Как посчитать биссектрису прямоугольного треугольника

Обратное утверждение («Прямая делит сторону на отрезки, пропорциональные двум другим сторонам») выражает признаки того, что рассматриваемая линия является внутренней биссектрисой;

8. Разносторонний треугольник позволяет определить взаимное расположение его высоты, медианы и биссектрисы, проведённых из одной точки. В частности, медиана и высота располагаются по разные стороны от третьей линии.

Видео:биссектриса прямоугольного треугольника #SHORTSСкачать

биссектриса прямоугольного треугольника #SHORTS

Все формулы биссектрисы в треугольнике

В зависимости от исходных данных, длина биссектрисы, проведённой к стороне C, lc, равна:

Как посчитать биссектрису прямоугольного треугольника

Видео:КВАДРАТ КАСАЕТСЯ БИССЕКТРИСЫ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА. НАЙТИ ГИПОТЕНУЗУ.Скачать

КВАДРАТ КАСАЕТСЯ БИССЕКТРИСЫ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА. НАЙТИ ГИПОТЕНУЗУ.

Примеры решения задач

Задача №1

В ΔABC ∠C = 90°, проведена биссектриса острого угла. Отрезок, соединяющий её основание с точкой пересечения медиан, перпендикулярен катету. Найти углы заданной фигуры.

Как посчитать биссектрису прямоугольного треугольника

Пусть ∠ACB = 90°, AD – биссектриса, BE – медиана, O – точка пересечения медиан, OD⊥BC.

Тогда OE : OB = 1 : 2по свойству медиан.

Так как OD⊥BC, то ODIIOC, следовательно, ΔBOD ∼ ΔBEC по второму признаку подобия, поэтому, по свойству подобных фигур, CD : DB = 1 : 2.

Это означает, что CA : AB = 1 : 2.

Так как катет равен половине гипотенузы, то ∠ABC = 30°, откуда ∠CAB = 60°.

Задача №2

Диагональ параллелограмма делит его острый угол пополам. Доказать, что этот параллелограмм является ромбом.

Как посчитать биссектрису прямоугольного треугольника

Так как ABCD – параллелограмм, то ∠DAC = ∠ACB, как накрест лежащие при параллельных прямых AD, BC и секущей AC.

По условию, ∠DAC = ∠ACB = ∠BAC, поэтому ΔACB равнобедренный, то есть AB = BC, следовательно, ABCD – ромб.

📺 Видео

Построение биссектрисы в треугольникеСкачать

Построение биссектрисы в треугольнике

Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

3 свойства биссектрисы #shortsСкачать

3 свойства биссектрисы #shorts

Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрияСкачать

КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрия

Найдите гипотенузуСкачать

Найдите гипотенузу

Свойства прямоугольного треугольника. 7 класс.Скачать

Свойства прямоугольного треугольника. 7 класс.

Геометрия Найти биссектрисы острых углов прямоугольного треугольника с катетами 24 и 18 смСкачать

Геометрия Найти биссектрисы острых углов прямоугольного треугольника с катетами 24 и 18 см

Высота в прямоугольном треугольнике. Как найти? Полезная формулаСкачать

Высота в прямоугольном треугольнике. Как найти? Полезная формула

Свойство биссектрисы треугольника с доказательствомСкачать

Свойство биссектрисы треугольника с доказательством

Найдите гипотенузу равнобедренного прямоугольного треугольника, площадь которого равна 1Скачать

Найдите гипотенузу равнобедренного прямоугольного треугольника, площадь которого равна 1
Поделиться или сохранить к себе: